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Abstract. We report the discovery of two dual and emergent sets of three irreversible
bi-vectors - dubbed the TauQuernions τi, τj, τk - that are otherwise isomorphic to
quaternions. This inherently dissipative 3-dimensional tauquernion space is a sub-
space of the geometric (Cli�ord) algebra G4,0 with generators {a, b, c, d} ; a straight-
forward mapping produces a 3+1 dimensional sub-space with signature (+ − −−) in
G5,0. The individual tauquernions are entanglement operators corresponding to the
quantum mechanical Bell and Magic operators. The form τi + τj + τk has 64 sign
variants of which 16 are nilpotent, which latter we identify with the Higgs boson; the
other 48 variants square to the unitary 4-vector ±abcd, which we identify as the carrier
of mass. A natural candidate for dark matter also emerges, which we analyze. We
calculate the information content of these and related forms, draw an exact map of the
entropic pathways an expansion will follow, and sketch how this Bit Bang develops.
Photons are clearly represented and transparently intertwined in the space, so one can
expect overall compatibility with relativity theory.
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1. Introduction

The authors are computer scientists using geometric (Cli�ord) algebras to de-
scribe and investigate the properties of abstract distributed computer systems
[11,12,14,15]. In the course of these investigations, we have discovered the
quaternion isomorphs, dubbed tauquernions, mentioned in the title. We apply
this new mathematical description of 3 and 3 + 1 dimensions to a contemporary
issue: the origin and formation of our 3 + 1d universe of 3-space, gravity, mass,
time, causality, and entropy, and how all this can emerge from a quantum me-
chanical soup lacking all of these things. It is important to understand that our
results are formally theory-neutral, in that they stem from a �nite, discrete and
combinatorial analysis of the entire phase space.

Our foremost goal here is to describe these novel structures in a straightforward
way, so our style is discursive rather than formal. We o�er physical interpreta-
tions of some of the algebraic forms that appear in order to facilitate the transfer
of this structure to the community of physicists. That is, we do computers, not
gravity.

1.1 Computational and Physical Processes

One might ask how a mathematics of concurrent computation can come to apply
to questions of fundamental physics. There are two pieces to answering this, the
�rst being a mathematics that can connect the two disciplines, and the second,
given this mathematics, the details of the connecting isomorphism.

We begin with the common view of a computer program - when it is executing
- as a sequence of discrete operations

()()()()()()()()()()()()()()

where each parenthesis-pair stands for a single such operation. Such a sequence
is called a process, and the following is a gloss on [11], to which the reader
is referred for a more detailed exposition. The process-level of computational
description refers not so much to entities themselves as to their interaction, and
the sequence of states this produces. In our model, everything is a process, or
an object built out of processes.

The key property of a process is the exact order in which its component opera-
tions take place. To capture this ordering property algebraically we will require
that each operation �( )� in the above sequence - now viewed as a product - be ir-
reversible (ie. no multiplicative inverse). This prevents algebraic manipulations
from changing the e�ective order.
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The algebra we will use is geometric (Cli�ord) algebra G, a graded vector al-
gebra with both inner and outer products, over the �nite �eld Z3 = {0, 1,−1};
Grassmann algebras are a subset of geometric algebra, and the Pauli and Dirac
algebras are particular geometric algebras. In fact, geometric algebra is now
often advanced as the much-needed common mathematical language for all of
physics [3,6,7,10,19]. We have a similar motivation vis a vis computer science.
The next section introduces geometric algebra; here we anticipate it on a gross
level.

A Theorem of geometric algebra: For any P ∈ G, P is irreversible i� P has
an idempotent factor X̂ = X̂2.

So make each operation �( )� an idempotent. An idempotent X̂ that is also
a projector has (in Z3) the form X̂ = −1 + X, where X is unitary: X2 = 1.
Putting all this together, a sequential process - aka. a measurement sequence -
looks like

(−1 +Xn)(−1 +Xn−1)...(−1 +X1) =
∏
n
X̂i, X2

i = 1

This is probably all more or less familiar to physicists. But the computational
reading of the algebra takes the correspondence much further. In this reading
[11], the idempotent form −1 +X is identi�ed as the primitive synchronization
operation signal(X), understood to mean �signal the occurrence of the event/state
X�.

Example. Multiple signallings of the same event's occurrence are semantically
equivalent to a single such signal, just as the measurement speci�ed by X̂ yields
no further information upon being repeated: X̂n = X̂.

Signal's complementary primitive is wait(X), ie. wait for the occurrence (signal)
of event X. It is critical to understand that this waiting is not �polling�, ie. that
the waiting process is constantly and actively checking to see if X has occurred
yet, aka. busy waiting. Busy-waiting turns out to be a quite untenable view
in an asynchronously concurrent universe - something subtler is necessary. A
careful analysis [11] reveals that the computational concept of wait(X) must be
mapped, speaking now algebraically, to some nilpotent ω ∈ G, ω2 = 0.

In physics, nilpotents supply the causal - and energy conserving - connection
between discrete physical events. Wait's play the corresponding role in the syn-
chronizational context - causal connection and conserving information between
computational events. Nilpotents are irreversible, so the implication of the
above theorem is that we must derive our ω's from our idempotents.

We can derive ω's form by considering two consecutive events Û ;V̂ , forming the
process V̂ Û . We will insist, now speaking computationally, that V̂ never occur
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before Û , ie. the actual process must specify that V̂ must always wait (ω) for Û .
That is, we want V̂ Û = V̂ ωÛ . Rewriting the lhs as V̂ Û = V̂ V̂ Û and expanding,

(−1 + V )(−1 + U) = (−1 + V )(−1 + V )(−U)(−1 + U)

we �nd that V̂ Û = V̂ (U−V U)Û , and indeed ω = U+UV is nilpotent so long as
U and V anti-commute.1 Computationally speaking, anti-commutativity means
�independent of each other�, as in the practice of orthogonal software design,
which focuses on ensuring that changes to one module do not a�ect another; or
as in �asynchronously concurrent�; or both, as here.

Processes like V̂ Û are exactly the processes covered by Turing's model of com-
putation, and since entities like Û ,V̂ are the projectors of U, V respectively
(so-called measurement operators), they are also the (observational) bedrock of
quantum mechanics. The key property of such processes - irreversible sequen-
tiality - makes them purely time-like processes. It is ultimately this time-like
property that allows Penrose to conclude [18] that computational processes can-
not capture all the phenomena that quantum mechanics has to o�er, among
which is entanglement, which is fundamentally space-like.

This prompts the question, �Where then is space-like computation�? Which
prompts the question, �What is space-like computation, what might it do?!�.
An answer to the latter would be, Expand the semantic reach of the computa-
tional metaphor to directly capture and express fundamental spatial distinctions
like left/right and inside/outside. Given computation as currently practiced,
we are forced to simulate (ie. fake) such matters, eg. via syntactically sug-
ared high-level languages resting on intricate, and usually sequential, run-time
environments.

[The issue is analogous to the background-in/dependence of a physical theory,
where string theory assumes a 3 + 1d background, whereas quantum gravity
theories, requiring that 3+1d be constructed, are background independent. In
these terms, we are presenting, here, a background-independent, non-super-
symmetric, quantum gravity theory.]

Space-like computation, whatever it is, must (for our purposes) provide the
equivalent of the quantum potential, with its wave-like properties. Now it is
characteristic of a primitive wave that two things change at the same time.
In the scalar world, these two things could be the x and y coordinates as one
traverses the circumference of the unit circle. Computationally, this dynamic
corresponds to viewing x and y as independent, but nevertheless jointly interact-
ing, concurrent processes that together achieve the required symmetry. 2 That

1Note that we could instead write V̂ Û = V̂ Û Û , which leads to ω = −V − UV . This
corresponds to the so-called advanced solution, and V̂ V̂ Û to the retarded solution.

2For example, alternating expression (or possession) of a conserved resource.
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is, rotation is an example of a space-like reversible computation, and is also a
process.

We accomplish the translation from asynchronous concurrent computational
processes to algebraic expressions in the following way. First, we interpret our
algebra's �+� sign to mean that (eg.) U + V are two asynchronously occurring
and executing, independent, computational entities, ie. processes or objects
constructed from same. Multiplication is action, transformation, process; both
measurement and rotation are examples.

Next, we interpret 1-vectors a, b, c, ... as (reversible) processes possessing a single
bit of state. These 1-bit processes are deterministic since the one state predicts
the next, which alternation encodes frequency ν. Since the grade of the vector
equals the number of bits of process state that it encodes, the m-vector ab has
2m=2 = 4 internal states, these being

{a+ b,−a+ b, a− b,−a− b}

Furthermore, these can be paired as a+ b = −(−a− b) and a− b = −(−a+ b),
and these in turn mapped to the orientation of ab (via the standard and diagonal
bases) as:

{a− b,−a+ b} 7→ +ab and {a+ b,−a− b} 7→ −ab

This mapping of states, computationally speaking, allows the whole, ab, to
maintain a �xed external appearance � its orientation of either +1 or −1 � while
at the same time its component processes a and b are themselves undergoing
their own (1-bit) state changes. If processes a and b have a stable joint behavior,
namely oscillations in one of the above two state-pairs, then ab accurately re�ects
this in a stable orientation.3 Furthermore, the computations a-b↔ -a+b and
a+b↔ -a-b, like their algebraic co-respondents, are reversible, both being simple
inversions. That is, they are both wave-like, ... and at that, exactly so (p. 11).

Returning to the introductory paragraph, the mathematical language common
to the disciplines of physics and computer science is found, as sketched in the
preceding, to be geometric algebra. The connecting isomorphisms are

� 1-vectors a, b, c, ... with magnitudes ±1 represent primitive, reversible pro-
cesses with 1 bit of state; and map frequency ν.

� m-vectors, m > 1, represent internally-concurrent process-objects encod-
ing 2m bits of state, externally exhibiting orientation ±1.

3The ambiguity regarding the �actual� state of ab leads to the uncertainty principle, and
connects with the �nub� mentioned in �2, but we do not pursue this further here.
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� Signal(U) is de�ned to be the idempotent Û = −1 +U , a measurement op-
erator on a unitary U ; and Wait(U) is then the nilpotent U +UV , with the
interpretation that (a later) event V̂ is causally connected to (an earlier)
event Û .

� Time-like/causal/irreversible processes are thenWait/Signal sequences (WS)∗.

� The wave-like quantum potential Ψ ⊆ G equals the computational G, con-
stituting an untrammelled, non-deterministic, concurrent computation.

Using this algebra, Matzke [10] found that the quantum entanglement Bell and
Magic operators have the form wx± yz. We show in �7.2 that this form cannot
be simulated by a time-like process. It is therefore especially important in the
following that the reader understand that when we write a sum in the algebra,
say U + V , we are seeing two concurrently executing objects U and V , not two
dead multivectors belonging to some algebra. [Readers liking conceptual origins
might want to read �7.2 �rst.]

Thus, when we catalog the unitary entities in the geometric algebra G3 and �nd
exactly three families thereof, whose properties encourage their interpretation as
neutrino, electron, and proton/neutron; and we also �nd three quarkish families
x+ yz, with inherent con�nement; along with photons x+ y+ z; and mesons =
quark plus anti-quark; etc. etc., all of which matches the standard model to a
T (cf. Appendix I); on top of which, it being a fact that G3 is isomorphic to the
Pauli algebra, we �nd it entirely reasonable to conclude that it is real physics
that is being described. Perhaps then it will not be so surprising that we �nd
that signals associate to fermions, and waits to bosons.

The Standard Model having exhausted G3's semantic carrying capacity, we grad-
uate seamlessly to G4 and thence to construct 3+1 space as G1,3, along with
gravity and mass. Here, among many other corresponding physical phenomena,
we �nd corroboration for earlier proposals [23] linking gravity and quantum
entanglement.

Finally, citing [2] (and see also [22]):

�A minimal quantity of heat, proportional to the thermal energy and called the Lan-
dauer bound, is necessarily produced when a classical bit of information is deleted. A
direct consequence of this logically irreversible transformation is that the entropy of
the environment increases by a �nite amount. . . . we experimentally show the existence
of the Landauer bound . . .�

Rolf Landauer (1962): �Information is physical.� That is, the now empirically
demonstrated physicality of information is what ultimately constitutes the con-
nection between physics and computation.
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Add to this the conclusion of Masanes et al. [24] that not only can the standard
formalism of quantum mechanics be formally derived from four information-
oriented axioms, but as well that their solution is unique. �Bits� are real and
cannot be subdivided. Information replaces and generalizes energy in their
(and our) view. At the other end of the conceptual spectrum, Moreva et al
[25] conclude from an entanglement-based experiment (as do we from analysis)
that time is an emergent phenomenon �deriving from correlations�, to which we
append that time emerges solely from entanglement (�3).

The next section (�1.2) introduces geometric algebra. We then de�ne the quater-
nion isomorphs in the title of this paper (�2), show how they �t into the Dirac
algebra (�3) and why their sum should be identi�ed with the Higgs boson (�4),
their relationship to the Bell and Magic quantum entanglement operators (�5),
the extension to dark matter (�6), an information-theoretic analysis of these
results (�7), and an entropy-driven Bit Bang (�8) that generates all of the fore-
going structures.

1.2 Geometric Algebra

For readers unfamiliar with geometric algebra: given a set of anti-commuting
1-dimensional unit vectors {a, b, c, ...}, these vectors generate the combinato-
rial space {±1, {a, b, c, ...}, {ab, ac, ad, ...}, {abc, abd, abe, ...}, ...} all of which m-
vector elements are mutually orthogonal.4 Thus n generators generate a space
of 2n dimensions. The generators are, simultaneously, the primitive reversible
2-state sequential processes at the bottom of the computational construction.
Uniqueness is established by the vector name, ie. we use single character
lower case alphabetic characters vs. the matrix column bra-ket notation used
with Hilbert spaces. Upper-case letters denote arbitrary multi-vectors, eg.
|A+B| = |A|+|B|; and the inner product obeys x·Y = xY , eg. b·ab = −b·ba = ã
(see [3,6,7,10] for operator-precedence rules).

We use the canonical geometric algebras Gn,0 = Gn, but over Z3 = {0, 1,−1}, so
a2 = +1, a + a = −a = ã, etc., which, in replacing �0,1� with �-1,1�, maintains
a binary feel, but with vastly expanded semantics compared to Boolean logic
and automata theory. We interpret +a to mean that whatever a indicates is
currently present, and ã that it is not; 0a denies a's very existence. 5 Few (if
any) of our results apply only in Z3: certain things � structural things � are just
easier to see without the additional complexities of multiplicities of identicals.

Geometric algebra's product ab = a · b + a ∧ b = −ba is anti-commutative, but
otherwise follows the usual associative and distributive laws. Arbitrary multi-
vectors A,B usually neither commute nor anti-commute.

4See also http://www.euclideanspace.com/maths/algebra/cli�ord/index.htm .
5We stress that zero is not a value, and we would never write �a = 0�. Rather, zero

appears as a situational indicator, eg. �a+ ã = 0�, meaning �the occurrence of a excludes the
occurrence of ã�. Or CBA = 0, meaning that the computation A;B;C has terminated.
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All of our calculations have been done with a custom Z3 geometric algebra
symbolic calculator, a Python upgrade of the calculator described in [14]. One
should not expect to get the same results from a generic Cli�ord algebra tool
without thoughtful tampering. We use Planck units: G = c = ~ = k = 1.

Notation. Due to the extreme symmetry of Gn over Z3 , one may safely as-
sume that a given expression is valid for all sign variants unless otherwise
noted. Nevertheless, we sometimes write generic expressions using x, y, ... ∈
{a, b, c, ....}, with x, y, ... taken without duplication, and all sign variants im-
plied unless otherwise noted. For example, the expression x− xy could denote
a − ab,−a − ab, b − ab, c − cd, . . . but not eg. a or ab alone, nor a + bc, nor
a + ab (because of the explicit minus sign). To minimize clutter, we use forms
with minimal minus signs, and in particular often 1 +x rather than −1−x (the
latter being indempotent and the square of the former), even though sometimes
it's not quite `correct'; readers who �nd this bothersome can just multiply by
-1. We sometimes distinguish between the elements of the abstract geometric
algebra G and the subset G that is currently instantiated.

We stress that the various algebraic expressions that we will present and dis-
cuss are discrete computational structures, eg. `plus' means `concurrent'. That
is, we view a, b, ab, ... as local, deterministic processes whose externally visible
states oscillate between ±1. So the state changes expressed by the algebra
represent concrete discrete computations producing concrete ie. determinate,
non-statistical discrete results. But since the �computation� consists of all pos-
sible non-exclusionary processes running �at out concurrently, the familiar non-
determistic statistical picture of quantum mechanics nevertheless emerges. This
computational view replicates Feynman's sum-over-paths interpretation by re-
alizing, concretely, the Bayesian encoding underlying Dirac's < V |U > bra-ket
notation (meaning �the probability of V 's occurrence given U 's�).

In summary, the Heraclitean �everything is process� interpretation that we are
placing on the algebra is quite di�erent from that of standard treatments of geo-
metric algebra [3,6,7,10,19]. The generators {a, b, c, ...} are, ultimately, primitive
distinctions, encoding only `±' = `opposite' in 1d. This expands in >1 dimen-
sions (ab, abc,. . .) to an m-ary xnor, ie. a negated xor. It would be a complete
misunderstanding to understand our G expressions as m.l.t. formulae. `'
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2. The TauQuernions

The quaternions encode 3d space via the multiplication (= rotation) table:

× Qi = ab Qj = ac Qk = bc

Qi −1 −bc ac

Qj bc −1 −ab
Qk −ac ab −1

=

× Qi Qj Qk

Qi −1 −Qk Qj

Qj Qk −1 −Qi
Qk −Qj Qi −1

The corresponding tauquernions are τi = ab− cd, τj = ac+ bd, τk= ad− bc. 6
Their multiplication table is below left; on the right is the same table, but with
the mapping 1+abcd 7→ �−1�. We emphasize that the tauquernion relationships
below are independent of the restriction to Z3.

× τi= ab− cd τj= ac+ bd τk= ad− bc
τi 1 + abcd −ad+ bc ac+ bd

τj ad− bc 1 + abcd −ab+ cd

τk −ac− bd ab− cd 1 + abcd

=

× τi τj τk
τi �−1� -τk τj
τj τk �−1� -τi
τk -τj τi �−1�

Like the Q's, the τ 's anti-commute, eg. τiτj= -τjτi ; close circularly, eg.
τiτk=τj ; and -τiτjτk = τkτjτi.

One can easily see that the two tables to the right, quaternion and tauquernion,
are isomorphic. The tauquernions, elements of G4, recapitulate in four spatial
dimensions what the quaternions, elements of G3, do in three (but with a twist).

We always operate on the left, so τkτjτi read right-to-left is the sequence

τi ; τj ; τk . This �full circle� rotation de�nes �+1� = (�−1�)2= (1 + abcd)2 =
−1− abcd, which is idempotent.

In fact, since wx + yz has the idempotent factor −1 ± wxyz , then via the
aforementioned theorem (�1.1), all tauquernions wx+yz are irreversible . The
details are revealing:

(ab− cd)4 = (ab− cd)[(ab− cd)(ab− cd)](ab− cd)
= (ab− cd)[1 + abcd](ab− cd) [ � -1 � ]

= (ab− cd)(−ab+ cd) invert

= −(ab− cd)(ab− cd)
= −(1 + abcd) ie. - (-1)

= −1− abcd idempotent

= � + 1�

6There is also a conjugate set: {τ ′i , τ ′j , τ ′k } = {ab + cd, ac − bd, ad + bc}. There

are 8 such triples: ±τi±τj±τk , and similarly for τ ′. Choosing a particular triple, as here,
constitutes an arbitrary choice of coordinate system orientation, cf. the �right hand rule� in
3d.
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which identities also justify our identi�cation of 1+abcd = �−1� in the table. The
interplay between ±1 and �±1� is the interplay of reversible change (space-like,
Ψ) and irreversible change (time-like, 2nd Law), and constitutes the scalar nub
of what tauquernions do: connect a space-like inversion directly to an exactly
corresponding time-like inversion: (−1)(ab− cd) = (1 + abcd)(ab− cd). 7

Thus, at least in principle, simply by replacing every (namely reversible) quater-
nion element xy in one's work with (the irreversible) xy + wz, one in e�ect
replaces an explicit time coordinate with an implicit one, perhaps allowing for
great simpli�cation.

The conjugate tauquernion table below di�ers only in negating the Q's:

× τ ′i= ad+ bc τ ′j= ac− bd τ ′k= ab+ cd

τ ′i 1− abcd ad+ bc −ac+ bd

τ ′j −ad− bc 1− abcd ab+ cd

τ ′k ac− bd −ab− cd 1− abcd

=

× τ ′i τ ′j τ ′k
τ ′i �−1� τ ′k −τ ′j
τ ′j -τ ′k �−1� τ ′i
τ ′k τ ′j −τ ′i �−1�

It follows that −τ ′iτ ′jτ ′k = −1 + abcd = �+1� just as we earlier saw that

−τiτjτk = −1− abcd = �+1�.

The table below rei�es these mappings for ±1 [a sqert is the square root of an
idempotent]:

I I2= �+1� I's type 7→
1− abcd −1 + abcd sqert ′ �−1�

1 + abcd −1− abcd sqert �−1�

−1 + abcd −1 + abcd idem ′ �+1�

−1− abcd −1− abcd idem �+1�

Taking 1−abcd as Minus One (�rst row above) as an example, then as expected
the usual multiplication/sign rules hold:

(−)× (−) = −1 + abcd +

(−)× (+) = +1− abcd −
(+)× (−) = +1− abcd −
(+)× (+) = −1 + abcd +

7 This is also a nice example of the familial a�nities of the algebras Gmod4. Note that
(1± abcd)E = −E only if E is an eigen-form of abcd (see later).
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Actually, this goes further, since it turns out that 1 ± abcd are examples of a
�sparse -1� [14]. Make a �truth table� for the expression abcd and represent the
result as a vector, yielding +abcd = [+ − −+ − + + − − + + −+ − −+]
and −abcd = [− + + − + − − + + − − + − + +−]. The elements of these
vectors form a (generally non-orthogonal) basis for their space.

Let zero · represent a state that does not occur; 1̃ = [−−−−−−−−−−−−
−−−−], and 1 = [+ + + + + + + + + + + + + + ++]. Then +1 + abcd is

[ + + + + + + + + + + + + + + + + ]

+ [ + - - + - + + - - + + - + - - + ]

= [ - · · - · - - · · - - · - · · - ]

That is, 1 + abcd = [− · · − · − − · · − − · − · ·−]= [− − − − − − −−] is a
sparse −1, and 1 − abcd is another. These forms, sparse and otherwise, play a
key role in the information-theoretic analysis of �7.

Summing up, we conclude that the two dual sets of tauquernions are each exactly
isomorphic to the quaternions, the essence of 3d space, except that tauquernion
space is inherently dissipative. This obtains because τi,τj,τk are individually
irreversible, as is their sum. Particulate motion in this space is thus thermo-
dynamically governed ie. entropic, and this property encourages us to identify
such motion with gravitational free-fall. It follows logically that the two con-
jugate τ -forms describe the two polarization states of gravitational waves, not
least because of the following extraordinary unifying connection (apparently
overlooked, since it appears in none of the obvious references [3,6,7,10,19]).

Theorem . The projection of a function F onto an orthogonal inner-product
space is the Fourier decomposition of F . � [17]

Since the elements a, ab, abc, . . . are all mutually orthogonal, whence Gn has
O(2n) dimensions, every expression in Gn is therefore implicitly a wave operator
as well as the structural description of a computational entity: we can auto-
matically impute wave-like properties to both entities (eg. the τ 's and their
sums) and interactions (products) in the tauquernion space. This gives the
whole endeavor a thorough-going hierarchical and holographic/distributed feel,
and completely redeems de Broglie's initial insight (1923) of the fundamental
wave-like nature of reality.

At the same time, tauquernion space is 3d spatially, and so inherently supports
the propagation of 3-dimensional waves even though it takes four orthogonal
distinctions {a, b, c, d} in phase space to construct these 3d waves. We now turn
to the algebra of this 3d space.
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3. Spacetime Algebra

We seek to de�ne the spacetime algebra G1,3 = {γ0, γ1, γ2, γ3} with signature
(+−−−).

Perhaps naively, we initially considered mapping abcd to the time-like dimension
via the vector γ0: the properties of geometric algebras cycle mod 4, so there is a
family resemblance between, say, G0 and G4, which is our case in point, since G0 is
the scalar dimension, and similarly, mass is a scalar quantity. It is only required
that γ0 square to +1, as indeed abcd does. This ensures that abcd qua mass, and
its automatically dissipative motion, isn't pushed into the background. Right
or wrong, this approach was abandoned when we discovered the density of the
physics and mathematics involved, and so instead we here simply establish the
standard formulation as well as we can.

The G4 tauquernion space, arising out of the quantum spinorial soup, is discrete,
and so we can associate a new �fth, unchained dimension t on which to tally a
sequence of discrete motions in the 3d tauquernion space. Changes in the state
of abcd map to the 1-vector t.

The resulting G5 generators are then {a, b, c, d, t}. Consider now only the sub-
space de�ned by the three tauquernions τi,τj,τk and t. The latter squares to
+1 while the other three square to �−1�, so we have a Lorentzian (+ − −−)
space, and it is our understanding that the requirements of special relativity are
therefore satis�ed; the next section pursues the putative connection to general
relativity.

De�ne now within G5 the mappings

t 7→ γ0 τi 7→ γ1 τj 7→ γ2 τk 7→ γ3

where the γi are anti-commuting 1-vectors. The γi then generate an explicit
basis for the spacetime algebra G1,3:

1, {γi}, {γi ∧ γj}, {γi ∧ γj ∧ γk}, I = γ0 ∧ γ1 ∧ γ2 ∧ γ3

�The structure of this algebra tells us practically all one needs to know about
(�at) space time and the Lorentz transormation group� [3, p.131]. We refer
the interested reader to [19 �24.4-7, 5, 8 ] for extended discussions of applying
geometric algebra to the standard formalisms of QM and GR.

This said, the derivation of the Dirac equation in [19] points out that the key
is that the quaternions can be construed as the square of the D'Alembertian
wave operator �. It follows that if/when the tauquernions, being irreversible,
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are substituted for the quaternions, it might well be possible to eliminate the
explicit time coordinate entirely and end up with the algebra G0,3 (over the
tauquernions) as a description of spacetime. [A paper currently in draft extends
this to include electro-magnetism.]

Howsoever, every set of τ 's also satis�es the basic condition for them to connect
with each other: that the grade of the parts ab + cd 7→ 2 + 2 ≤ 4 not exceed
the grade of their union, here abcd 7→ 4 . In so doing, and taking advantage of
G's being a coordinate-free algebra, the next section shows that an associated
coordinate-free, dissipative, discrete Higgs �eld then automatically appears as
the 3+1d τ -coordinate system itself.

The transition from this discrete �eld to a continuous �eld over R lies beyond our
remit, but we note that the entire algebra lies under the umbrella of Parseval's
Identity, and by implication, of harmonic analysis, which latter applies very
generally. Indeed, this identity is wave-particle duality in a nutshell.

On the other hand, some writers [1] suggest abandoning R altogether:

�A key assumption of [the contemporary Theory-of-Everything scene] is that it regards
the laws of physics as being the bottom line, and assumes that these laws govern a
world of point particles or strings (or other exotica) that is a continuum. Another
possibility is that the Universe is not at root a great symmetry but a computation. The
ultimate laws of Nature may be akin to software running upon the hardware provided
by elementary particles and energy. The laws of physics might then be derived from
some more basic principles governing computation and logic. This view might have
radical consequences for our appreciation of the subtlety of Nature, for it seems to
require that the world is at root discontinuous, like a computation. This makes the
Universe a much more complicated place. If we count the number of discontinuous
changes that can exist, we �nd that there are in�nitely many more of them than
there are continuous changes. By regarding the bedrock structure of the Universe as a
continuum we may not just be making an approximation but an in�nite simpli�cation.�

We note that (1) actually, we show that truly concurrent computation (cf. �7.2)
upholds the symmetries, cf. the isomorphism between eg. G3 and the Pauli
algebra; and (2) the mentioned �hardware� is crude analogy by our standards -
we construct it all (�8).

Howsoever, an entity X existing in phase space Ψ = G comes to occupy 3 + 1d

tauquernion space via the projection (τi+ τj + τk)·X, which projection also
masks the quantum dimensions automatically, replacing them with τi, τj , τk
and, indirectly, t.
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4. The Higgs Boson

We identify H = τi+τj +τk , whence H2 = 0, with the Higgs boson. To see
why, we look more closely,

H = (ab− cd) + (ac+ bd) + (ad− bc)

= ab+ ac− bc + (a+ b− c)d

from which we see that H - our space constructor - is a combination of a quater-
nion triple ab+ ac− bc and a photon a+ b− c. Both of these are nilpotent, as
is their sum. The photon is however con�ated with the d-distinction, a change
in which is mapped notionally to the aforementioned t dimension to achieve a
traditional time-like process.

Thus each of the three τ 's is a combination of one quaternion component and
one photon component. Clearly, H contains three dimensions - in both the
space-like and time-like senses - in the most compact way imaginable. The
nilpotence of H also expresses the existence of a vacuum energy directly.

Note that H's form has 6 components which together generate 26 = 64 sign
variants. Of these, 16 are nilpotent and thus Higgs bosons (ie. phases),

H = {X = ±ab± ac± bc± ad± bd± cd | X2 = 0}.

The other 48 square to ±abcd, which we identi�ed in the preceding section as
the unit mass carrier; these 48 form the set

M = {X = ±ab± ac± bc± ad± bd± cd | X2 = ±abcd}.

We interpret the sign of abcd as its rotational orientation in 3+1 space.

We note that for X ∈ H, X abcd = abcdX = ±X, but only abcdX = X abcd
for X ∈M.

The elements X of H∪M are eigenforms of abcd: |X abcd| = |X|, which in turn
de�ne boundaries of abcd. That is, we de�ne ∂Xabcd = X abcd to be the bound-
ary of abcd with respect to X - - in formal analogy to partial di�erentiation,
and with a nod to DeRham's theorem. If also |X abcd| = |X|, then we further,
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and oppositely, say that the co-boundary of X is abcd: δ(X) = abcd. That is,
we de�ne the �integral� δ in terms of the �derivative� ∂. 8

In this way, abcd is the integral of any X ∈ H∪M, since δ(wx + yz) = wxyz.
That is, δ is a mass-creation operator with respect toM, and a creation operator
generally. Said oppositely, both H andM are boundaries of abcd, but have very
di�erent properties.

We now re-write H as

(1 + abcd)(ab+ ac− bc) = H (1)

The factor 1 + abcd is a self-boundary of abcd. Being irreversible, 1 + abcd is
a time-like operator. This operator is operating on the quaternionic 3d space
ab+ ac− bc, which produces a bosonic potential H.

Thus equation 1 looks like a local version of Einstein's basic GR equation: the
time-like aspect of a mass abcd, aka. �gravity�, operates on a 3d space ab+ac−bc
made out of the very same mass aspects, and produces a wave-like, space-like,
but inherently dissipative 3 + 1d potential, aka. the space-time stress tensor.
The general form is H = (±1± wxyz)(xy + xz + yz).

Let X,Y, Z over a, b, c, d and X ′, Y ′, Z ′ over p, q, r, s be two sets of tauquernions
written in the above form. Noting that that form commutes, we can write

(X + Y + Z)(X ′ + Y ′ + Z ′) = (1 + abcd)(ab+ ac− bc)(pq + pr − qr)(1 + pqrs)

Thus the mass-mass interaction (1 + abcd)(1 + pqrs) has |{(ab + ac− bc)(pq +
pr − qr)}| = 32 spatial connections, cf. Newton's inverse square law.9

That is, the dissipative 3d tauquernion space can also be seen as the time-like
interaction of masses in a reversible 3d quaternion space. If one happens to
believe that space is entirely passive, ie. that (1 + abcd)(1 + pqrs) is the whole
story, then one arrives at the classical, Newtonian, view of masses in 3d space
a�ecting each other mysteriously.

8More concisely, δQX = ±Q i� ∂XQ = XQ and |XQ| = |X|. We take ∂ and δ to be
elements of the algebra - rather than the usual operators over the algebra - this being a less
sophisticated but more concrete encoding of the same ideas.

9However, even though (ab + ac + bc)(pq + pr + qr) is nilpotent, and as well sandwiched
between two idempotents, from which it derives, this is not a causal connection with (ab +
ac− bc)(pq+ pr− qr) playing the role of Wait, because (1 + abcd)(1 + pqrs)6=(1 + abcd)(ab+
ac − bc)(pq + pr − qr)(1 + pqrs), cf. [11]. That is, in the classical view represented by
the form (1 + abcd)(1 + pqrs), space plays no causal role. [As well, (1 + abcd)(1 + pqrs) =
(1+pqrs)(1+abcd), which commutativity shreds any sequential or localized notion of causality.]
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In this context, note that xy + xz + yz = xyz(x+ y + z), so electro-magnetism
(via photon x+y+z) is directly in the picture, namely neatly woven into the 3d
gravitational space created by the tauquernions. It bears mentioning, though,
that the (±1± wxyz)(xy + xz + yz) form obscures the connection to the EPR
phenomena that underlie the very existence of abcd and the space it both lies
in and forms (�5, next).

Recalling eqn. 1

(1 + abcd)(ab+ ac− bc) = H = ab+ ac− bc+ (a+ b− c)d (2)

which describes matter acting on space, we can multiply through by abc to
create the abc-conjugate form:

(1− abcd)(a+ b− c) = a+ b− c− (ab+ ac− bc)d (3)

which describes matter interacting with light. Summing the rhs's of eqns. 2
and 3 (= concurrent occurrence) and re-arranging, we get:

(2) + (3) = (a+ b− c)(1 + d) + (ab+ ac− bc)(1− d)

Note that 1 ± d are measurement operators. Recalling the lhs's of eqns. 2
and 3, Voila, light interacts with matter in entropic quaternion space (lhs) with
resulting e�ects (rhs) on the light and the space:

(1− abcd)(a+ b− c) (a+ b− c)(1 + d)
+ = +

(1 + abcd)(ab+ ac− bc) (ab+ ac− bc)(1− d)

All four pieces are nilpotent, as are their sums (ie. each side), which indicates
that this interaction is an irreversible, ie. thermodynamic, event.

If instead of adding eqns. 2 and 3, we subtract their expanded forms:

(1− abcd)(a+ b− c) (a+ b− c)(1 + d)
- = -

(ab+ ac− bc)(1− d) (1 + abcd)(ab+ ac− bc)
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then both sides simplify to (a+ b− c)−abc(a+ b− c), a purely electro-magnetic
state.

If this seems obscure, it is perhaps well to recall that every expression in the alge-
bra is a Fourier decomposition, and so what is being `added' are the oscillations
of concurrent processes at various frequencies, phases, and dimensionalities.10

That is, these descriptions are �particulate� only insofar as one can single out
some sub-expression that is unitary that one can then try to measure.

5. Entanglement

We now expand on our earlier statement that each τi is a quantum mechan-
ical Bell/Magic operator, and that the τj and τk are the Bell/Magic states.
These operators capture quantum entanglement, and are the bread and butter
of quantum computing research and practice. For the reader's convenience, Ta-
ble 1 reviews these as they are usually represented. [In this section, we will refer
to QM's causal potential with the symbol Υ.]

We have previously shown [14] that the Bell operator is ab+ cd and the Magic
operator is its conjugate, ab− cd; and that these operators are irreversible due
to multiplicative cancellation. Two qbits qA and qB in classical states qA = a−b
and qB = c− d de�ne an initial global state qAqB = (a− b)(c− d) = ac− ad−
bc+ bd =τj+τk. 11 This global state is called �classical� because it namely can
be factored (�separated�) like this. The Bell and Magic operators entangle such
classical states to produce an ebit, which, in not being so separable, displays
the characteristic EPR properties [15].12

Ebits have the same form as qbits except that they are a sum of bivectors,
instead of vectors. A qbit spinor is a single bivector ab or cd, but an ebit spinor
is the sum of entangled spinors, eg. ac+ bd. Like a qbit, an ebit acts as a single
co-exclusion (�7.2), even though it is made out of two qbits.

One can only be amazed to �nd, as Tables 2 and 3 show, that the Bell/Magic
operators and the states they generate also in fact exactly cover H, and thus
constitute a completely di�erent partitioning and view of H-space, which, let us

10Namely, in our example, a+ b− c+ ab+ ac+ ad− bc+ bd− cd− abd− acd+ bcd.
11Meaning (reading o� the signs) a ∧ ¬b and c ∧ ¬d, ie. each encoding �zero� (vs. �one�:
−a+ b and −c+ d). Thus qA0 = qB0 = �0� here. This encoding, while conceptually redundant,
makes �zero/one� superposition states explicit.

12The original labels for qbits in [13] were qA = a0 − a1, qB = b0 − b1, so qAqB = a0b0 −
a0b1 − a1b0 + a1b1. Therefore Bell = a0a1 + b0b1 and Magic = a0a1 − b0b1, so then
B0 = − a0b0 + a1b1 and M0 = a0b1 − a1b0, whence one can clearly and explicitly see the
entanglement in the redistribution of the ai and bj , whence qA and qB are no longer separable.
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basis basis state 1 basis state 2 basis state 3 basis state 4

standard |00> |01> |10> |11>

diagonal |0′0′> |0′1′> |1′0′> |1′1′>
Bell Φ+ Φ− Ψ+ Ψ−

1√
2

( |00>+ |11> ) 1√
2

( |00>− |11> ) 1√
2

( |01>+ |10> ) 1√
2

( |01>− |10> )

Magic 1√
2

( |00>+ |11> ) i√
2

( |00>− |11> ) i√
2

( |01>+ |10> ) 1√
2

( |01>− |10> )

Table 1: A summary of quantum mechanical bases in standard notation.

not forget, has a de�nite 3 + 1d cast. Successive application of the Bell/Magic
operators produces the corresponding Bell/Magic states. Notice that the states

drop from four bivectors (τj+τk) to two bivectors (-τ ′j) due to cancellation,

and it is this information loss that makes the entanglement thermodynamically
irreversible.13

The Bell and Magic states are 90o out of phase,14 and since the starting state is
generally some classical state like qAqB = ac− ad− bc+ bd, which can now be
rewritten as B3+M3, the multiplicative cancellation occurs due toM×Bell = 0,
B×Magic= 0 or B×M = 0. These cancellations mean these states have disap-
peared from the causal potential Υ, and cannot be reached by any multiplicative
operator (�transformation�), but rather only by addition, eg. M3 = B0 − ac.
Recall that addition means concurrency, ie. −ac comes from the outside.

The fact that the Bell and Magic states cannot transit (back) to classical states
via multiplication is relevant as well to the M2 = abcd states. For example,
M = ab+ac+ad+ bc+ bd+ cd =Bell + B1 +M3, a mixture of Bell and Magic
states. Only by concurrently adding new bivectors to the mix can a system exit
these cyclical/closed/entangled state spaces. Since all of these states are related
via entanglement relationships, we see that �mass� is massively entangled.15 In
the language of EPR, the Φ± and Ψ± are singletons that represent maximally
entangled states and behave as multiple �things� acting as one, with consequent
non-local correlations. Mass, once created, is thus stabilized.

Table 4 demonstrates that the states τj and τk are the Bell and Magic states.
[We have shown only two conjugate sets of tauquernions here, but as noted
earlier, there are eight. Of the eight, four are related to τ i and the other

four to τ ′i. The groups of four are all sign variants of each other such that
H =τ i+τ j+τ k, whence H2 = 0. All of these sets contain all of the Bell/Magic
states.]

13We note that the Hilbert space version shows reversibility. So far as we know [14], this is
the only such deviation.

14In general, the state transitions are B(i+1)mod 4 = BiBell and M(i+1)mod 4 = MiMagic.
15In fact, any two conjugate τ 's could be named �Bell� and �Magic� operators, and all would

otherwise be the same. It's best to just assume that everything is more or less entangled with
everything. Consequently, gravity is everywhere.
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The complete overlap of τ -space and entanglement space means that fundamen-
tally, qbits and ebits are directly related to, and in fact are, the underpinnings
of gravity and mass. Fittingly like gravity, the EPR e�ect is non-polar, since
the two ends of the e�ect are equivalent and of the same valence. The lesson of
this reasoning is that irreversible quantum mechanical entanglement establishes
the associative footings on which, and out of which, gravity constructs its net.

qAqBBell = B0 = Φ+ = �ac+ bd =−τ ′y
B0Bell = B1 = Ψ+ = ad+ bc = τ ′z
B1Bell = B2 = Φ− = ac � bd = τ ′y
B2Bell = B3 = Ψ− = �ad � bc = −τ ′z
B3Bell = B0 =−τ ′y

Table 2: Bell operator and resulting Bell states.

qAqBMagic = M0 = ad � bc = τz
M0Magic = M1 = �ac � bd =−τy
M1Magic = M2 = �ad+ bc =−τz
M2Magic = M3 = ac+ bd = τy
M3Magic = M0 = τz

Table 3: Magic operator and resulting Magic states.

τx τy τz τ ′x τ ′y τ ′z
Magic M3 = −M1 M0 = −M2 Bell B2 = −B0 B1 = −B3

Magic M3 = −M1 M2 = −M0 Bell B2 = −B0 B3 = −B1

Magic M1 = −M3 M0 = −M2 Bell B0 = −B2 B1 = −B3

Magic M1 = −M3 M2 = −M0 Bell B0 = −B2 B3 = −B1

Table 4: Equivalence of Tauquernions and Bell & Magic operators

19



6. Dark Matter

In this section and the next two, we move from explanations of the tauquernions
and the structures they form to some consequences. Foremost among these is the
question of whether the tauquernions have anything to say about dark matter,
which we now take up. �7 then describes our information-theoretic analysis of
all of our results to that point, and �8 uses this analysis to tell a Bit Bang story.

Other work [11] has shown that the key elements of the standard model - bosons
and fermions, three quark families, etc. - are captured by G3, which is isomorphic
to the Pauli algebra {i, j,k} via the mapping {iab, iac, ibc}. In particular, the
unitary elements of G3 all correspond clearly: 16

Particle G3 element Family size

primitive distinction x 3
neutrino family x+ y + xy 3
electron family xy + xz 3∗

proton family x+ y + z + xy + xz 3
neutron=xyz proton y − z + xy − xz + yz 3

photon x+ y + z 1
∗Eg. the three electron siblings are: xy + xz, xy + yz, xz + yz.

The middle column of the table exhausts the catalog of unitary (X2 = 1) entities
in G3 and are all familiar, so dark matter is presumably not to be found here.
We therefore must look in G4. The simplest non-trivial unitary element of G4 is

m = a+ b+ c+ d

Assuming that m must be related to mass, ie. abcd, we now calculate m's
co-boundary to abcd, which requires that |∂mabcd| = |m|, and which yields

∂mabcd = mabcd = −abc+ abd− acd+ bcd

so ∂mabcd is not similar to m, ie. m is not an eigenform of abcd. We can though
apply the distributive law to the sum of ∂AX = B and ∂BX = A, whence
∂A+BX = (A + B)X, which yields |(m + mabcd)abcd| = |m + mabcd|. So the
desired co-boundary is

16Primitive distinctions - �rst row - may not be observable in actuality. Photons - last
row - are, of course, nilpotent. Note that the electron projection operator −1 + xy + xz =
x(−x+ y + z), ie. an x-rotation of a photon; there is a similar factorization of −1± proton.
See Appendix I for the complete Z3 G3 Standard Model.
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δ(a+ b+ c+ d− abc+ abd− acd+ bcd) = abcd

We therefore de�ne, in parallel with H∪M, the set D,

D = {(w + xyz) + (x+ wyz) + (y + wxz) + (z + wxy)}

which has 28 = 256 sign variants. D is our hypothesis for dark matter, and we
now investigate its structure and properties.

If one looks at D from a projective point of view, the 1-vector generators of the
algebra are points de�ned by lines/processes that intersect a common plane, ie.
are simultaneous with, and bivectors are the directed lines on that plane that
connect these points. In this projective view, w, x, y, z are then the vertices
of a tetrahedral volume element with triangular faces {wxy,wxz,wyz, xyz} =({w,x,y,z}

3

)
. We hypothesize that these four triangles correspond to the 4 Planck

areas/ln 2 = 1 bit relationship [20]. Similarly, the (x+ y + z)-boundary of the
triangular face xyz yields the quaternions {xy, xz, yz}.

Just as H∪M, along with 1 and abcd, form the largest even sub-algebra of G4,
so D is the largest odd sub-algebra. The elements of D form three subsets, the
elements of the �rst of which all square to quaternionic triplets:

Dq = {D ∈ D |D2 = xy + xz + yz, x, y, z ∈ {a, b, c, d} }

and contains 128 elements. We note that xyzDq = ±1± wxyz + {H,M}.

There are also 96 D's that are 8th roots of unity:

Du = {D ∈ D |D2 = (w + x)(y + z) & D8 = 1}

Note that (w+ x)(y+ z) = −(y+ z)(w+ x), ie. they anti-commute, and so the
Du possess a spinorial quality. One can also multiply D2 out: (w+ x)(y + z) =
(wy + xz) + (wz + xy) and see that these are two tauquernion forms (and,
simultaneously, separable states). We will see in �7.1 that the Du contain a
further subdivision of 96 = 16 + 80, indicating the existence of two types of
material dark matter. [This time, xyzDu = ±1± wxyz +M.]

Finally, there are 32 nilpotents D0, for which xyz D0 = −1 + wxyz +H:

D0 = {D ∈ D |D2 = 0}

Thus {xyzD} = {−1+wxyz+H∪M}, ie. normal matter and dark matter can
be understood as being 3-dimensionally perpendicular to each other. Finally,
128 + 96 + 32 = 256, whence D = Dq ∪ Du ∪ D0.
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- - -

The fact that {xyzD} = {−1+wxyz+H∪M} and therefore that the elements
of D and H ∪M can be rotated into each other allows a further analysis.

Let for example Da = −a− bcd; Db = b+acd; Dc = c−abd Dd = d+abc,
and de�ne generally D = Da+Db+Dc+Dd such that D ∈ D. In this example,
D2 = −bc+ bd− cd ∈ Dq. Now construct their multiplication table, ie. D2

q :

Dq ×Dq Da = −a− bcd Db = b+ acd Dc = c− abd Dd = d+ abc

Da 0 ab+ cd ac− bd ad+ bc

Db −ab+ cd 0 0 0

Dc −ac− bd 0 0 0

Dd −ad+ bc 0 0 0

The sum of the Da row is namely DaDb + DaDc + DaDd ∈ H′, and anti-
commutatively, the sum of the Da column is DbDa +DcDa +DdDa ∈ H. That
is, D2

q = H + H′ ! This holds for all elements of Dq - all such tables contain
zeroes except for one element each from H and H′, and thus each element of Dq
harbors the potential for bothH andH′ and so a complete set of tauquernions.17

In contrast, the corresponding tables for elements of D0 contain only zeroes;
and the tables for Du all look like this one:

Du ×Du Da = a+ bcd Db = b+ acd Dc = c+ abd Dd = d+ abc

Da 0 −ab− cd 0 ad− bc
Db ab− cd 0 ad− bc 0

Dc 0 ad+ bc 0 −ab− cd
Dd ad− bc 0 −ab+ cd 0

wherein we see that only two out of the three tauquernion forms appear, doubled,
and including conjugates; the table sums to ab+ cd− ad+ bc = (a− c)(b− d),
where again there is a spinorial aspect (and two separable qbits). The missing
tauquernion forms can be recovered from the products of the others, so Du×Du,
like Dq ×Dq, harbors an alternative pathway to H ∪M.

A rather di�erent view emerges when one realizes that most of the partial prod-
ucts (w+xyz)(x+wyz) in fact generate τ 's, and it is only their signs and sums
in the full 4-way form that generate the three di�erent outcome D's. Thus D2

0's
�ve τ 's sum to zero (three τ 's are identical and the other two complementary),

17Since 1+3 ≤ 4, dark patches can connect smoothly, and, since the algebra is self-consistent,
this connection must be compatible with that of H∪M.
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D2
u's four τ 's sum to (w + x)(y + z), and D2

q 's three τ 's sum to a quaternion
triple (three xy's are identical). So there are a lot of τ 's �oating around in the
soup. Note in this connection that, like the individual τ -components of H and
M, each of the Dk and sums thereof satisfy δDk = abcd.

Finally, these τ 's are also entangled states, so (via xyz-rotation) all of the
elements of D are also entangled, although it seems that this is indirect.

Summarizing, like H andM, the elements of D also can interact to form space
and matter, but more indirectly. A key issue is the energies at which w + xyz
and D form, and closely related is the question of what role the pathways from
D to H ∪M play.

A pertinent question at this point is, How do the elements of D interact with
light? We have identi�ed xyz as the carrier of charge [11], but that is in the
context that δ(x+y+z+xyz(x+y+z)) = xyz, where xyz(x+y+z) = xy+xz+yz
is the spinorial basis of the magnetic e�ect, and x, y, z each � 13 electrical charge�.
This context is missing from both H ∪M and D. So, on this basis, one should
not expect much of an electro-magnetic interaction with either of them (and
indeed, 3d space is indi�erent to electro-magnetism).

On the other hand, D's four xyz terms still have spin, even if it isn't identi�able
any more as �charge�. This spin could nevertheless conceivably retain electric
charge's like-sign repulsive property, and so could be advanced as a contributor
to the vacuum energy. We also note thatH can be rewritten (w−xyz)(x+y−z).
However, re xyz (which squares to -1 and hence is `polar'), where there's a `plus'
there's a `minus', which polarity opens the door for (eg.) dark �ionic cluster�
formation and the like, a possibility that can at this point only be speculation.
Finally, D0 and Dq, both being roots of zero, will both presumably contribute
to the vacuum energy.

Howsoever, the fact that there now is a detailed mechanism in hand should
simplify the task of �nding a viable way to detect dark matter generally.

23



7. Information Content and Kind

We now embark on exact calculations of the information content (and its trans-
formation) of expressions in the algebra. The overall picture is a �Bit Bang�
modelled as the algebraic expansion G0 → G1 → G2 → G3 → G4, which ex-
pansion is driven by entropy creation via the conversion of information from
space-like (non-Shannon) to time-like (Shannon) form.

Section �7.1 calculates the numerical information-theoretic skeleton of our Z3

G4 algebra, which is possible because of its �niteness and relatively small size:
316 ≈ 43 million expressions. Since the algebra is the phase space, this exact
(!) numerical skeleton has cosmological implications that we pursue in �8.

Section �7.2 then describes the computational mechanisms that de�ne and create
the aforementioned space-like, non-Shannon information. [ Our use of the term
�non-Shannon information� is distinct from, but consistent with, a like-sounding
entropy-related term, �non-Shannon-type inequalities�. ]

In this section we refer to G = {1, a, b, c, . . . , ab, ac, . . . , abc, . . . , . . .} rather than
G because we are referring speci�cally to actual instantiated elements, though
these of course also belong to the abstract geometric algebra G.

7.1 Calculating Information Content

The formal concept of information is due to Claude Shannon (1948), who de�ned
the information content I of an event x as

I(x) = −lg px

where px is the probability of occurrence of the event x, and lg is the logarithm
to the base 2. Thus, as is well known, the more improbable the event, the greater
its information content. The import of this de�nition for us is best understood
with the example of an if-then-else-type decision. The form [11]

X( 1 + <− 1− a,±a> ) + Y ( 1 + <− 1 + a,±a> )

describes the computation if a then X else Y , where the brackets < , > = ±1
indicate the inner product of the idempotent measurement probe −1 ± a with
an entity ±a in the surround, and + indicates as usual the concurrency of the
processes X,Y ∈ G. Here we see that a static bit of information - encoded
in the ± state of a - is converted into the motion [state change] of one of the
processes X or Y , since one of the two expressions will yield zero and the other
minus one (minus because X (or Y ) now changes state). Note particularly that
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the information is consumed : a has been changed by the measurement and no
copies made. One correctly concludes that a binary decision costs one bit of
information.18

Applying this to Gn, this means that a measurement sequence that would locate
some entity∈ Gn having an information content of m bits would require m such
nested if 's. Furthermore, this decision process transforms the static space-
like information contained in the current state of Gn into dynamic time-like
information at an exchange rate of 1 : 1. It is this transformation (on a massive
scale) that constitutes our expanding time-like universe.

This transformation is fundamentally entropic in character. Because the alge-
bra is �nite, we can calculate the probability of occurrence of an expression,
and so we can know its information content. Knowing that, we can follow the
entropy trail - loss of information - and make predictions about what further
transformations will occur.

We therefore now embark on the calculation of the information content, mea-
sured in bits, of every element ofGn, n = 0, 1, 2, 3, 4. This is an exact calculation,
since it is based on pure combinatorics and resulting integer ratios.

The binary nature of our algebra allows us to fully expand the combinatorial
content of any given expression in the fashion of a �truth table�. Below we show
the tables for ab, abc, and abcd. Beneath the tables are vectors of the respective
result (rightmost) columns; these result vectors are the basis for our information
content analysis.

18Notice, by the way, how the 1-dimensional 180o opposition between X and Y as coded
in ±a becomes a conjugate (90o) opposition, −1 − a vs. −1 + a, in the translation from the
sequential to the concurrent view.

25



a b ab

− − +

− + −
+ − −
+ + +

a b c abc

− − − −
− − + +

− + − +

− + + −
+ − − +

+ − + −
+ + − −
+ + + +

a b c d abcd

− − − − +

− − − + −
− − + − −
− − + + +

− + − − −
− + − + +

− + + − +

− + + + −
+ − − − −
+ − − + +

+ − + − +

+ − + + −
+ + − − +

+ + − + −
+ + + − −
+ + + + +

[+−−+] [−+ +−+−−+] [+−−+−+ +−−+ +−+−−+]

As an example, we take the vector for abc and add to it +1 and −1:

abc = [− + + − + − −+] abc = [−+ +−+−−+]
+1 = [ + + + + + + + +] −1 = [−−−−−−−−]

[ · − − · − · ·− ] [+ · · + · ++ · ]

Note that the pattern of symbols is the same for abc and the two sums, the only
di�erence being that in abc, the two symbols that appear are + and −, whereas
in the sums the two symbols are · and −, and + and ·, respectively (recall that
· symbolizes zero). But the ratios are the same: here, four of each and no third
symbol. And if you think about it, this proportionality will always hold - all
that happens with the summing of abc with ±1 is that one so-to-speak rotates
a three-symbol mapping vector [· ,+,−] �rst to [− ,· ,+] and then to [ +,− ,·]
: the proportions will therefore always be the same.

Argument. A pattern encoding consists of a 3-tuple (#0's, #1's, #-1's), which
forms a signature of the vector's structure. Suppose we have the pattern vector
(2, 2, 4) and imagine a (minimal) decision tree - think nested if 's - that identi�es
any expression having this pattern. Then the amount of information embedded
implicitly in the tree's decision points is the measure of the tuple's information
content. The three symbols are interchangeable because the tree's form (the
structure of the search space) is indi�erent to which symbols lie at its leaves.
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Since the ratios are invariant under exchange of symbols, the counts can appear
in any order, so we just sort the tuples numerically.

This symbol-invariance implies that ±abcd and ±1 ± abcd all have the same
information content. Since the latter form de�nes a measurement on the former,
and these two therefore should be the same, this is comforting. For this and
similar reasons, we think that any classi�cation scheme (cf. binning, below)
must subscribe to the collapsing of 0, 1, 1̃ into one signature.19

This all means that we can classify every expression in the algebra in terms of
its result-vector's signature. We will soon see that these informational classi-
�cations exactly match the H,M,D, bosonic, and unitary particle structures
previously discussed.

Since a polynomial ∈ Gn has maximally |Gn| = 2n mutually orthogonal terms,
and their coe�cients can be one of 0, 1,−1, we get the set S, of size |S| = 32

n

,
which covers all of the possible expressions in G. With S in hand, we can count
how many times k each pattern X occurs, and we can then divide k by |S| to
get the probability p of X's occurrence:

pX = k
3|Gn|

If k = 1, then is there is but one single occurrence of X in S, so pX would be
minimal, but this actually can't happen - the best you can do is the three scalar
constants, 0, 1, 1̃, where k = 3.

From the other end of the microscope, a minimal X requires the full measure
of the information in S in order to be identi�ed and isolated. That is, the
information content I of an expression X ∈ G is

I(X) = −lg pX = −lg k
3|Gn| = lg 32

n

k bits

X's information content is thus a function of how many other X's share its
signature, and the size of the space it occurs in.

An obvious application of this is to ask, What is the information content of
some particle P , having in mind the fact [20] that 1 bit = 4 Planck areas /ln 2
(≈ 10−66 cm2).

Thus, for example, a single Higgs boson H = (1 + wxyz)(xy + xz + yz) =
xy + xz + yz + wx + wy + wz exists in 16 states out of the 64 possible in the
form. Its information content is therefore

19Void cannot have its own category because, by de�nition, it has no properties by which it
might be so categorized, including the property of having no properties. Void can �rst become
manifest in the distinction [1, 1̃].
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I(H) = lg 316

16 = 21.3594000 bits 20

The next step, the conversion of bits to Gev, turns out to be unexpectedly
complicated, and is our current focus. The �nal paper will hopefully contain
this result for H,M,D, and all the rest too.

Of interest equal to individual particles, however, is the picture painted with
the broader brush of the signatures and bin counts themselves.

Table 5 lists the information content, calculated in this broader way, of relevant
elements of Gn. Because rarity/information is relative to the size of the space,
the measure of (say) ab is 2.17 bits in G2, 7.29 bits in G3, and 18.9 bits in
G4. But at the same time, all of a, ab, abc, and abcd, at any given level, have
the same measure, since their uniqueness stays proportional to n; note that
namely these also have the highest information content after 0, 1, 1̃. In general,
the lower the bit value, the larger the family of entities having that count, and
oppositely, the higher the count, the smaller the family. We now explore this a
little more.

The function bitsN(X) = lg 32
N

count(X′s) calculates the information content of

X ∈ G relative to GN .

Then, re G0, the three scalar constants 0, 1,−1 are all known and occupy the
entire space, which is of size 32

0

= 3 states, one each for {0, 1,−1},

� So each occurs with probability p = 1
3 7→ lg 3 = 1.58 bits, but

� Known means bits0(0) = bits0(1) = bits0(−1) = lg 3
3 = lg 1 = 0

� So G0 actually contains no information.

In G1 there are 32
1

= 9 states, three for G0's scalars, ∈ (0, 0, 2), and 2 + 4 = 6
more for ±a and ±1± a, both ∈ (0, 1, 1):

� The scalar constants are known, and so they contain no information, but
nevertheless occupy three slots in the state space⇒ bits1(1) = lg 3 = 1.58
bits.21 [It is a mod-3 coincidence that the numbers for G0 and G1 are the
same.]

� 1-vectors occupy the remaining states in G1, so bits1(±a) = lg 9
6 = 0.58

= bits1(±1± a).

20This result di�ers from Table 5 (below) because we have ignored the other members of its
bin, (4,4,8). Also, we don't know what the experimentalists are actually measuring - perhaps
we should have calculated ±1±H, etc.

21Recall that 0, 1,−1 all map to the same pattern, whence 3 and not 1.
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� The net result is that exactly 1 (classical) bit of information is encapsu-
lated in the structure a: bits1(1)− bits1(±a) = 1.00 .

For G2, the algebra of pure qbits:

� The scalar constants are known, but occupy state space: bits2(1)= lg( 81
3 ) =

4.75 bits.(ditto)

� Here is a smallest addressable state: (1−a)(1−b) = 1−a−b+ab ∈ (0, 1, 3)
7→ bits2((1−a)(1− b)) = lg( 81

24 ) = 1.75 bits, corresponding to a single row
of the form's �truth table�. The 24 count comes from the 24 sign variants
of 1− a− b+ ab plus the 23 sign variants of a+ b+ ab.

� In �7.2, we show how it is that simple concurrency, a + b, mere concur-
rent existence, contains and encodes information. Here we just calculate:
bits2(a) = 2.17 = bits2(b), bits2(ab) = 2.17, bits2(a+ b) = 1.17 bits,

� Whence bits2(ab) − bits2(a + b) = 1.00000000, where we show in the 0's
the number of signi�cant digits that actually are available in these (exact)
calculations; we show rounded values otherwise.

In G4:

� Let m = a+ b+ c+ d, whence D = m+mabcd and D2 = 0. As shown in
Table 5, D0 ∈ (4, 4, 8) and each D contains 5.53 bits of information.

� But abcD = −1 + ab− ac+ ad+ bc+ bd+ cd+ abcd computes to 6.87 bits
(not shown). One does not expect a reversible operator like abc to change
the information content of an entity.

� The explanation is that the rotation by abc changes the signature bin
that the expression falls into, and the new bin, namely (2, 6, 8), has fewer
members, and so the information content is higher. �It's not the rotation's
fault.� [We will exploit this phenomenon in our Bit Bang story in �8.]

� In Table 5, there are two examples of binnings that further di�erentiate
the 3-signature - (a + b + c)d and M2 are both ∈ (4, 6, 6), yet their bit-
measures di�er, 12.1 vs. 7.08, and again a+bcd and D0 are both ∈ (4, 4, 8),
but their measures are 15.1 vs. 5.53.
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Particle/Form Vector (G3 and G4 samples) G1 G2 G3 G4
G0

Void 7→ 0 is [ · · · · · · · · ] ∈ (0, 0, 8), 0 1.58 4.75 11.1 23.8

±1 are [±±±±±±±±] ∈ (0, 0, 8), 0 1.58 4.75 11.1 23.8

G1
a ±exist [−−−−+ + ++] ∈ (0, 4, 4), 1 0.58 2.17 7.29 18.9

1− a (measure) [−−−− · · · · ] ∈ (0, 4, 4), 1 0.58 2.17 7.29 18.9

Row0 (1− w) . . . (1− z) ∈ (0, 1, 1), (0, 1, 3), (0, 1, 7), (0, 1, 15) 0.58 1.75 7.09 18.8

G2
ab ±spin [+ +−−−−++] ∈ (0, 4, 4), 1 � 2.17 7.29 18.9

a+ b co-occ [+ + · · · · −−] ∈ (2, 2, 4), 2 � 1.17 4.70 15.1

a+ b+ ab ν [−−−−−− · · ] ∈ (0, 2, 6), 3 � 1.75 5.29 15.6

a+ ab W,Z † [ · · + + · · −−] ∈ (2, 2, 4), 2 � 1.17 4.70 15.1

1 + ab [−− · · · · −−] ∈ (0, 4, 4), 1 � 2.17 7.29 18.9

G3
abc ±charge [−+ +−+−−+] ∈ (0, 4, 4), 1 � � 7.29 18.9

a+ bc quark [ · + + · − · ·−] ∈ (2, 2, 4), 2 � � 4.70 15.1

ab+ ac e [− · · + + · · −] ∈ (2, 2, 4), 2 � � 4.70 15.1

a+ b+ c+ ab+ ac p [−−−− · + +−] ∈ (1, 2, 5), 5 � � 2.70 11.5

a+ b+ c γ [ · − −+−+ + · ] ∈ (2, 3, 3), 3 � � 3.29 12.1

ab+ ac+ bc 3-space [ · − − −−−− · ] ∈ (0, 2, 6), 3 � � 5.29 15.6

G4 ����

abcd +mass [+−−+−+ +−−+ +−+−−+] ∈ (0, 8, 8), 1 � � 18.9

1− abcd [ · − − · − · · − − · · − · − − · ] ∈ (0, 8, 8), 1 � � 18.9

qAqB 2 qbits [ · · · · · +− · · −+ · · · · · ] ∈ (2, 2, 12), 4 � � 14.1

a+ b+ c+ d [−+ + · + · · −+ · · − · − −+] ∈ (5, 5, 6), 4 � � 10.1

(a+ b+ c)d [ · · +−+−−+ +−−+−+ · · ] ∈ (4, 6, 6), 3‡ � � 12.1

M1 (16/64) proto-mass [ · · · + · + + · · + + · + · · · ] ∈ (0, 6, 10), 6 � � 13.1

M2 (32/64) proto-mass [+ +− · − · −+ +− · − · −++] ∈ (4, 6, 6), 6‡ � � 7.08

H (16/64) Higgs [− · + + · −+−−+− · + + · −] ∈ (4, 6, 6), 6 � � 7.08

Bell = ab+ cd = τ ′ [− · · − · + + · · + + · − · ·−] ∈ (4, 4, 8), 2 � � 15.1

Magic = ab− cd = τ [ · − − · + · · + + · · + · − − · ] ∈ (4, 4, 8), 2 � � 15.1

B0 = −ac+ bd [ · +− · + · · − − · · + · −+ · ] ∈ (4, 4, 8),2 � � 15.1

M0 = ad− bc [ · +− · − · · + + · · − · −+ · ] ∈ (4, 4, 8), 2 � � 15.1

a+ bcd dark [+ · · + · + + · · − − · − · ·−] ∈ (4, 4, 8), 2‡ � � 15.1

D0 dark [− · − · · − · +− · + · · + ·+] ∈ (4, 4, 8), 8‡ � � 5.53

Dq dark [+ +− · + +−−+ +−− · +−−] ∈ (2, 7, 7), 8 � � 6.87

Du (80/96) dark [−− · · · · −+−+ · · · · ++] ∈ (4, 4, 8), 8 � � 5.53

Du (16/96) dark [+ · · · · · · · · · · · · · · −] ∈ (1, 1, 14), 8 � � 15.9

Table 5: Information content (in bits) of principal Gn forms. † Tentative. ‡ See text.
Note palindromes.
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These examples show that information content values like those in Table 5
are sensitive to the binning algorithm that is used. Fortunately, whatever the
binning, the results will always be consistent because the underlying population
is the same.

Our general-purpose binning algorithm (used in Table 5) �rst applies the 3-
pattern signature, and then further bins together only those expressions having
the same number of non-scalar terms.22 Therefore, co-occurrences/qbits x+ y,
electrons xy + xz, and quarks x + yz, which already have the same signature,
will still bin together. Thus, the numbers in Table 5 and its cousins will always
be indicative rather than de�nitive, since how one bins is determined by which
interaction-classes one is interested in.

There are other interesting things in Table 5: the information content of space
as described by classical quaternions is 3.3 bits smaller than that of matter
(15.6 − 18.9). Photons (a + b − c) and their confounding (a + b − c) ∗ d have
the same measure, 12.1, which is rather larger than H's 7.08, which contains
them. There are apparently two forms of proto-massM (13.1 vs. 7.08), and we
note that the former is a sparse +1 variant. Singletons always have the highest
bit value after the scalars, even more than two classical qbits qAqB . But then,
given their spin, they are bits yo. Finally, note that the Bell/Magic states, D,
quarks, and electrons all have the same measure, 15.1, only slightly less likely
than light, 12.1; and versus the rather more likely H andM at 7.08 bits.

Howsoever, as the expansion proceeds - - G1 → G2 → G3 → G4 in Table 5 -
- Ψ's information content shrinks as the information in 3 + 1d gets denser and
denser. For example, the two classical bits qA, qB use 4 spinors and 14.1 bits
to encode 1 ebit - time-like stability costs! Matter itself is only slightly denser
at 18.9 bits per: frozen potential (because actualized), robbed of its variability
through loss of degrees of freedom. This is the fate of the space-like non-Shannon
information that is converted, as the expansion of the universe, into time-like
Shannon information.

We pursue this entropic expansion in a cosmological setting in �8. Before doing
so, we introduce and de�ne the concept of non-Shannon information, and show
how this builds structure.

7.2 Non-Shannon information

There is a subtle paradox - concerning kinds of information - that we must
deal with before going further. Shannon's concept of information, as we have
seen, can be viewed as a descent into a binary tree from root to leaf, where at

22This increases the number of bins from 10 to 14 for G3, and from 30 to 86 for G4. For
example, in the text just above, (a + b + c)d ∈ ((4, 6, 6), 3), M ∈ ((4, 6, 6), 6), a + bcd ∈
((4, 4, 8), 2) and D0 ∈ ((4, 4, 8), 8). All 43 million expressions were binned.
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each branch point, one bit is consumed in the choosing of one path versus the
other. Two points should be noted: (1) the (information represented by the)
bits are(is) consumed and converted into the motion/advance of the descent-
process; and (2) action is what this is all about... this sequential process is blind
to context, and sees only its own (namely causal) point of view. The process
concept, here exempli�ed, is sequence and action, combined. Thus Shannon's
view of information is purely time-like.

It is di�cult to see how Shannon's de�nition misses anything out, and yet . . . it
does. There is a kind of information that falls beyond it, namely the information
of concurrent existence, what we call non-Shannon information. The following
Coin Demonstration makes the argument.

Act I . A man stands in front of you with both hands behind his back. He shows
you one hand containing a coin, and then returns the hand and the coin behind
his back. After a brief pause, he again shows you the same hand with what
appears to be an identical coin. He again hides it, and then asks, �How many
coins do I have?�

Understand �rst that this is not a trick question, or some clever play on words
- we are simply describing a particular and straightforward situation. The best
answer at this point then is that the man has �at least one coin�, which implicitly
seeks one bit of information: two possible but mutually exclusive states: state1
= �one coin�, and state2 = �more than one coin�.

One is now at a decision point - if one coin then X else Y - and only one bit
of information can resolve the situation. Said di�erently, when one is able to
make this decision, one has ipso facto received one bit of information.

Act II . The man now extends his hand and it contains two identical coins.

Stipulating that the two coins are in every relevant respect identical to the coins
we saw earlier, we now know that there are two coins, that is, we have received
one bit of information, in that the ambiguity is resolved. We have now arrived
at the dramatic peak of the demonstration:

Act III . The man asks, �Where did that bit of information come from?�

Indeed, where did it come from??! The bit originates in the simultaneous pres-
ence of the two coins - their co-occurrence - and encodes the now-observed
fact that the two processes, whose states are the two coins, respectively, do not
exclude each other. 23

Thus, there is information in (and about) the environment that cannot be ac-
quired sequentially, and true concurrency therefore cannot be simulated by a

23Cf. Leibniz's indistinguishables, and their being the germ of the concept of space: simul-
taneous events, like the presence of the two coins, are namely indistinguishable in time.
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Turing machine. Penrose concluded in [18] that Turing machines cannot sim-
ulate quantum mechanics. Both Turing and Penrose consider the case f ‖ g,
meaning execute the non-interacting processes f and g in parallel (and harvest
their results when they end). Clearly one gets the same results whether one runs
f �rst (f ; g) or g �rst (g; f), or simultaneously, f ‖ g. In this functional view of
computation, the only di�erence is wall-clock time. The Coin Demonstration is
not about these cases at all, but rather asks, Can f exist simultaneously with g,
or do they exclude each other's existence? This is the fundamental distinction
that we draw.

More formally, we can by de�nition write a + ã = 0 and b + b̃ = 0, meaning
that (process state) a excludes (process state) ã, and similarly (process state)
b excludes (process state) b̃ . 24 Their concurrent existence can be captured by
adding these two equations, and associativity gives two ways to view the result.
The �rst is

(a+ b̃) + (ã+ b) = 0

which is the usual excluded middle: if it's not the one (eg. that's +) then it's
the other. This arrangement is convenient to our usual way of thinking, and
easily encodes the traditional one/zero (or 1/1̃) distinction.25 The second view
is

(a+ b) + (ã+ b̃) = 0

which are the two superposition states: either both or neither.

The Coin Demonstration shows that by its very existence, a 2-co-occurrence like
a+b contains one bit of information. Co-occurrence relationships are structural,
ie. space-like, by their very nature. Such bits, being space-like, are the source
of non-Shannon information.

[Cf. Table 5, this information is twice that of a or b alone in G1, but 2.17−1.17 =
1 bit less than a, b or ab in G2.]

Act IV . The man holds both hands out in front of him. One hand is empty, but
there is a coin in the other. He closes his hands and puts them behind his back.
Then he holds them out again, and we see that the coin has changed hands. He
asks, �Did anything happen?�

24This is the logical bottom, and so there are no superpositions of a/ã and b/b̃: they are 1d
exclusionary distinctions . Superposition �rst emerges at level 2 with ab via the distinction
exclude vs. co-occur.

25Since x̃ is not the same as 0x, an occurrence x̃ is meaningful; in terms of sensors, x̃ is a
sensing of an externality x, not x itself.
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This is a rather harder question to answer. To the above two concurrent ex-
clusionary processes we now apply the co-exclusion inference, whose opening
syllogism is: if a excludes ã, and b excludes b̃, then a + b̃ excludes ã + b (or,
conjugately, a+ b excludes ã+ b̃). . . . This we have just derived.

The inference's conclusion is: and therefore, ab exists. The reasoning is that we
can logically replace the two one-bit-of-state processes a, b with one two-bits-
of-state process ab, since what counts in processes is sequentiality, not state
size, and exclusion births sequence (here, in the form of alternation). That is,
the existence of the two co-exclusions a + b̃ | ã + b and a + b | ã + b̃ contains
su�cient information for ab to be able to encode them, and therefore, logically
and computationally speaking, ab can rightfully be instantiated. We write δ(a+
b̃) = ab = −δ(ã + b) and δ(a + b) = ab = −δ(ã + b̃). A fully realized ab is, we
see, comprised of two conjugate co-exclusions, a sine/cosine-type relationship.

We can now answer the man's question, Did anything happen? We can answer,
�Yes, when the coin changed hands, the state of the system rotated 180o: ab(a+
b̃)ba = ã+b.� We see that one bit of information (�something happened�) results
from the alternation of the two mutually exclusive states.

With the co-exclusion concept in hand, we can now add a re�nement to the
idea of co-occurrence. Recall that S is the space of all imaginable expressions
in G. But, thinking now computationally, this means that they are all �there�
at the same time! That is, S is the space of superpositions, of all imaginable
co-occurrences of elements of G all at the same time; whereas G is the space of
actually occurring (but still space-like) entities, which means no co-exclusionary
states allowed. When things move from S to G, superposition is everywhere
replaced by reversible alternation, ie. G is a sub-space of S.

Co-exclusions, being superpositions, thus live exclusively in S, whereas co-
occurrences can exist in both S and G, though their objects are slightly di�er-
ent. Co-occurrences in τ -space have yet another �avor. Each of the transitions
S → G and G →τ is entropically favored. We now look at the former, the
latter being the standard theory of quantum measurement.

As a �rst example, consider the scalar distinction [1, 1̃], an element of S, which
is mapped to the vector a, an element of G, and therewith encapsulates one bit,
cf. Table 5. [1, 1̃] ∈ S because both 1 and 1̃ must be simultaneously present if
the idea of their distinction is to be meaningful. Thus, what is a superposition
of 1 and 1̃ in S becomes an alternation between 1 and 1̃ in a ∈ G. A degree of
freedom has been lost.

A second example: the co-exclusions (a + b̃ | ã + b)|(a + b | ã + b̃) induce the
formation of ab. What happens is that the superpositions in S represented
by the co-exclusions - three of them - have been replaced by their actualized
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alternations, (a+b̃↔ ã+b)↔ (a+b↔ ã+b̃) inG. 26 That is, the superpositions
in S are replaced by space-like exclusions in G, which is, again, a reduction in the
number of states. In the next step, this reversible alternation in G is replaced
by before/after, that is, it becomes a time-like (irreversible) exclusion in τ .

The overall movement of information is thus from superposition in S to space-
like exclusion (�alternation�) in G to time-like exclusion (�before-after�) via pro-
jection/measurement in τ . Each of these steps increases entropy by (further)
compartmentalizing information, which reduces correlation, ie. increases noise,
which is entropy.

The information that Shannon de�ned is namely time-like, and is exactly mod-
elled by a binary decision tree descent from root to leaf. In contrast, what δ
does is to build that tree from the leaves (detailed co-occurrences like a+ b̃) �rst
to ab, ie. δ(a+ b̃) = ab, and from there up to the root abc . . . z. In doing so, it
reduces the information content of S by turning its superpositions into exclu-
sionary distinctions in G, which in turn, at level 4, are projected into 3 + 1d
tauquernion spacetime. The Bit Bang explosion is much like the irresistible
salesman who argues that owning one cow after the other is really just as good
as owning two cows at the same time. (Although it isn't, as we know.)

When we calculate the information content of G = Ψ, we are counting non-
Shannon information. And yet, the conceptual basis for this counting up of
non-Shannon information is Shannon's time-like information, information you
can use to locate and identify things in a space, cf. the binary tree descent!
This is the "subtle paradox" mentioned in the �rst sentence of this section.

We resolve the paradox by viewing the entropic expansion G0 → G1 → G2 →
G3 → G4 as the conversion of the space-like information in S and G into time-like
information in τ -space - ebits, mass, 3d space, gravity, entropy, and time. That
is, causal potential is converted into causal actuality, and it is in this conversion
that the Shannon encoding of non-Shannon information is rendered meaningful,
as namely Shannon information.

The continuation of this entropically-favored process of increasing encapsulation

a
δ−→ ab

δ−→ abc
δ−→ abcd

δ−→ . . .
δ−→ abc . . . z

would seem to lead to the conclusion that black holes are to be described by
pseudo-scalars of grade 4n, where n is very large, and �4� because this is a grav-
itational phenomenon, and the algebra cycles semantically mod 4 (and more
subtly, mod 8). We are namely looking at (ie. inside) the interior of a gi-
gantic gravitationally resonantly bound particle with 24n dimensions. At this

26Note that the co-exclusion form sums to 0, and so holds no contradiction.
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extremely high level of gravitational organization (read heavily entangled), ev-
erything is so intensely correlated with everything else that, in the limit, all
entities become indistinguishable from each other. In this way, the stage is set
for a new expansion. 27

8. Cosmological Evolution

The preceding section dilineated the information content of elements of the al-
gebra, and thereafter how these elements are stitched together computationally
and mathematically (namely with co-exclusion 7→ δ) to create ever more ac-
tualized structures. Left unaddressed however, is how exactly these algebraic
elements come to be in the �rst place.

Metaphysics aside, we rely on two pillars of support in this telling of this story:

� The structure of the algebra itself, without questioning whether this is
putting too much in by hand.

� The entropic propensity, ie. the truth of the 2nd Law of Thermodynamics.

These are the governing principles in what follows.

The overall story arc is that the information creation via co-occurrence (cf.
the Coin Demo), which is both dominant and non-Shannon, can be sustained
using reversible mechanisms. The result is an exponentially expanding space-
like information space, namely G = Ψ. This information is then bled o� by
its conversion into its time-like form, which we experience as H,M,D, the Big
Bang, and its aftermath.

The primitive mechanisms that contribute to the creation of bits of information
are

� Distinctions: scalar 1 vs. 1̃, and (multi-)vector XY = −Y X

� Products, XY

� Co-occurrences, X + Y

27We note that the Pythagorean relationship B2
1 +B2

2 = (B1 +B2)2 for the total entropy of
the merge of two black holes B1, B2 [21] is satis�ed by any two tauquernions so long as they
anti-commute. See also the discussion of Zn arithmetics in Appendix I.
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The last of these dominates the information content of both S and G = Ψ
because the number of co-occurrences grows hyper-combinatorially. The two
distinctions are clearly proto-bits. �Products� get their own line because, if
co-occurrence is the steam locomotive, then products - being the generators of
novelty - are the coal car, without a constant supply of which, the train will
grind to a halt. This is detailed below.

Since we are dealing chie�y with co-occurrences, all �information� is non-Shannon
unless otherwise noted. We are dealing only with extant elements of S, that is,
with the elements of G as so far constructed. Abusing combinatorial nota-
tion, we are generating the set {

({1,a,b,...}
m

)
} of all the possible forms in G =

{1, a, b, . . .}. This generates Σ
(
n
m

)
− 1 = Σ

1

(
n
m

)
= 2n − 1 elements.

The reason that the formula is Σ
1

(
n
m

)
, ie. leaving out one possibility (m = 0), is

that Void cannot be a party to a co-occurrence. This is because by de�nition,
0 means �does not occur�, in the sense that Void does not �happen�, does not
�take place�, in either space or time, as opposed to the mis-understanding �not
there at all�. Thinking back to the Coin Demonstration, it simply cannot be
performed when there is N oThing in the man's hand, but this does not deny
Void's presence.

We begin our construction with the scalars, G0. These are Void 7→ 0 and the
primitive distinction [1, 1̃] that emerges from Void [12]. The scalars have no
dimensionality but can represent a primitive distinction if one has two of them.
Dimensionally, Void 7→ 0 represents a point, and the two-valued distinction ±1
is the prototype of a line.

Including Void, G0 has three distinctions [¬Void,¬1,¬1̃] leading to lg 3 = 1.58
bits; counting just the two non-zero states, this represents lg 2 = 1.00 bit.
These two di�erent bit-measures express the di�erence between the space S
of possibilities, and the space G of extant (in Ψ) entities, ie. those that have
actually been constructed out of the possibilities.

The transition from G0 to G1 maps the scalar distinction [1,1̃] to a 1-vector, a.
This is an entropically favorable transition, according to Table 5, because a has
one bit less information than the scalars from which it is formed. This mapping
rei�es into an exclusion what previously was only a potential to be 1 or 1̃. Both
scalars and vectors are now present, and Table 5 shows that they always have
the highest information content of all.

The forms Σ
1

(
2
m

)
of G1, which we might also write as Σ

1

({1,a}
m

)
, yield the set

{1, a, 1+a}, but δ(1+a) = a, which we already have, so no novelty is generated.

The expansion must therefore seek another route ... which is (to await) the co-
occurrence a+ b, wherein we imagine the parallel existence of many G1's (this
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is all an idealization, of course). Once a and b co-occur, they can co-exclude,
whence ab, a new entity, is added to G. This is the coal car feeding the steam
engine: every time a new entity is added to G, the number of co-occurrences,
the size of G, doubles. 28

Note that even though the multiplication a+b 7→ ab is reversible (eg. a(ab) = b),
information is nevertheless created when ab is created (2.17 vs. 1.17 bits). As
noted in �7.1, what is going on is that bins - of possibility - are simply being
visited.

Addition (co-occurrence) is doing most of the work of the expansion - it's always
entropically favored. But multiplication supplies a vital piece, namely the step
from a + b to ab. This being a crucial step, we reason that ab has the same
information content as a and b, so in multiplying the latter together, it's 1×1 = 1
so to speak: we are simply combining things of the same measure and nothing
is being �manufactured�. Nevertheless, ab is still novel, so in the context of S
and G and their basis in co-occurrences, we still harvest an information windfall
from ab's appearance, because this gives (entropically favored) birth to a whole
new generation of co-occurrences.

This may sound dodgy - something for nothing is always suspect - but the
mathematics speaks clearly. It is non-Shannon (ie. space-like) information that
becomes available via (though not because of) space-like rotation, G = Ψ is
expanding (because of addition), and there is no time-like context here.

This reasoning applies to all co-occurrences and products, and thus the expan-
sion of Ψ is a general free-for-all application of co-occurrence + and action ×
over and between all extant entities, biased in the general direction of entropy
generation. But we are ahead of the story, and now must back up.

Eventually, all the elements of our G1, call it G
a
1 = {1, a}, will have been

generated, so we must await a co-occurrence with a new entity, call it b ∈ Gb1,
and we then can generate Ga1 + Gb1. Recall that co-occurrences always have a
lower information content than the singletons composing them, so Ga1 + Gb1 is
entropically favored.

Once there is co-occurrence, there can be action: G2 is created by Ga1 × Gb1=
{1, a, }×{1, b} = {1, a, b, ab} = Gab2 . Besides qbits, this produces, in particular,
the high-information bivector ab, and thence W/Z and neutrinos.

Nevertheless, at some point, the combinatorial possibilities of Gab2 too will be
realized, whence we await a co-occurrence with an entity belonging to another
G, say Gab2 +Gc1, leading to the product Gab2 ×Gc1 :

28Strictly speaking, we should not count 1-vectors and pseudo-vectors, the
(n
1

)
and

(m
m

)
terms of the Σ, since we're counting co-occurrences, and these are singletons. On the other
hand, including O(n) singletons has negligible impact on O(2n).
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Gabc3 = {1, a, b, ab} × {1, c} = {1, a, b, c, ab, ac, bc, abc}

With Gabc3 we get photons, electrons, quarks, protons, neutrons, mesons, gluons
- all the familiar members of the Standard Model.

Similarly, Gab2 ×Gcd2 and Gd1×Gabc3 together generate Gabcd4 - giving us H,M,D,
3 + 1 spacetime, mass, gravity, and entropy - at which point we leave quantum
mechanics. G4n ×G4n describe higher-order gravitational structures.

However, we have again gotten ahead of our story. In generating G2 from
G1 × G1, we can further imagine the co-occurrence and subsequent product
of several (say four) G1's (over, say, a, b, c, d), which will then produce the six
bivectors ab, ac, ad, bc, bd, cd.

Once again we recall that co-occurrences always have a lower information con-
tent than the singletons that compose them, so entities like ab+cd will again be
entropically favored. These are, of course, τ 's (⇒ Bell/Magic states and ebits),
and so we see that there is an entropically favored route to H and M. [The
same applies to xy+xz (electrons) and x+ yz (quarks).] Since, all else seeming
equal, there are three times as many M states as H states, the tendency here
will be for the formation of normal matter.

Similarly, G1 +G3 will produce co-occurrences like w + xyz, the atoms of dark
matter, so D is also an entropically favored outcome. Note that with the ex-
ception of 16Du, dark matter will be formed preferentially to normal matter,
cf. 5.53, 6.87, 5.53 versus 15.9 in Table 5. [Appendix II continues this discussion of
combinatorial expansion.]

In both cases, the expansion is hyperexponential, and, being prior to the actual
formation of 3+1d spacetime via the τ 's , is also not limited by the speed of light.
Thus this combinatorial expansion presumably models the initial in�ationary
episode of standard cosmology.

Summarizing the cosmological development, both graphs in Figure 1 show the
two major pathways to space/mass creation: upward on the left, the creation
of 3 + 1d space and normal matter, δ(H∪M) = abcd, via the pathway δ(δ(a+
b) + δ(c + d)) = abcd; and upward on the right, dark matter, via the pathway
δD = δ(d + δ(c + δ(a + b))) = abcd, but then also for the latter, a �back door�
down to H ∪M via D2

q , D2
u, and abcD (cf. �6).
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Figure 1: Two equivalent graphs of normal & dark matter creation. Growth (δ) is up-

ward, as the ambient energy falls. The dotted lines symbolize the indirect tauquernion

creation from dark-dark interactions.

9. Summary and Conclusions

We have a very promising candidate, the tauquernion τ - forms

H,M = Σ
({a,b,c,d}

2

)
, H2 = 0, M2 = abcd

for the long-sought connection between quantum mechanics and 3+1d relativity
theory. This connection, which creates space, matter, and time, takes the form of
a new, inherently entropic, way to describe 3d space. The conjugate forms of the
Higgs bosonsH presumably correspond to the dual polarizations of gravitational
waves, and the members ofM are the precursors of the unit mass abcd.

The overlap of H ∪M and the entanglement states allows the partitioning of
our understanding of matter and space into two complementary views: The
tauquernion view focuses on the formation of matter, 3 + 1d space, and gravity;
whereas the the Bell/Magic view focuses on how the space and the matter all
interconnect to form the whole. In hindsight, these two functionalities - the
formation of structures and their interconnection - surely do lie best on the
very same foundation - which turns out to be the largest even sub-algebra of
G4 = {1, ab, ac, bc, ad, bd, cd, abcd}. But that's hindsight.

40



A near cousin D of H ∪M, the largest odd sub-algebra of G4,

D = Σ
({a,b,c,d}

1,3

)
, D2 ∈ {0, xy + xz + yz, (w + x)(y + z)}

o�ers a uniquely believable candidate for dark matter that also connects to
H∪M via secondary τ -based connections. Our analysis predicts three types of
dark structure, one nilpotent, one space-like (in that these square to quaternion
triples), and one material (being 8th roots of unity). This latter has two forms
in the proportion 16 : 80, one (20%) heavy (15.9 bits) and one (80%) light (5.53
bits).

As this last sentence indicates, we have calculated the information content of
every expression in G0, G1, G2, G3 and G4. The classi�cation system we developed
to do this is based on the observation that an algebraic expression that picks
out a single row of its "truth table" uses the most algebraic terms in order to
provide this most discriminating speci�cation. The sign-counts (#+'s, #−'s,
#0's) associated with an expression, which counts are as well invariant over
symbol substitutions, �t this observation exactly. However, because many quite
di�erent expressions in G4 have the same count-signature, giving misleadingly
high bin populations, our �nal classi�cation algorithm therefore uses both these
counts and the number of (non-scalar) terms in the expression - a Euclidean
length - to choose a bin. Thus our binning algorithm compactly represents both
the state and the algebraic complexity of any expression.

We explicitly iterated through all sign variants of all expressions in G1 (2 bins),
G2 (4 bins), G3 (14 bins) and G4 (86 bins for 43 million expressions) in order
to calculate the exact bin populations for each such signature. These in turn
yield the highest bit value for the least likely bins (eg. m-vectors and single-row
speci�ers) and the lowest bit value for the most likely bins (eg. large concurrent
expressions).

The biggest surprise was that primitive concurrency (addition of vectors/m-
vectors) is easily the primary mechanism for information creation. While mul-
tiplication's transformative power is, as we saw (�8), necessary to maintain a
supply of novel entities, the hyper-combinatorial state expansion fostered by
additive combination of said novelty vastly exceeds the latter's numbers. The
potential information so created is ultimately released as energy according to
the relation 1 bit = 4 Planck areas /ln 2.

As the state space expands from G1 thru G4, the bit value of an individual
m-vector grows from 0.58 to 18.9 bits due to the explosion in the size of the
state space. This Bit Bang represents real bits that are released as real energy,
the energy that fuels the Big Bang when converted to the (statistically likely)
Higgs and mass states at 7.08 bits. Thus, for example, two bivectors at 18.9
bits each, combined concurrently (eg. yielding a τ ), yield a co-occurrence with
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an information content of 15.1. This (probably) entangled τ -state persists due
to irreversibility, and therefore has increased likelihood of forming (with two
others) an element of H∪M, with an ensuing huge further entropy increase to
7.08 bits. Globally and locally, the expansion process is monotonic due both to
the irreversibility of the entangled Bell/Magic states and the entropic expansion
in general.

In the standard QM story, the quantum potential Ψ is the home of superposi-
tions, and the transition from superposed to de�nite states lies at the heart of
the quantum mechanical world. Since in the same standard story there is no
mechanism � it being entirely statistical in content � no �ner distinctions were
needed. Having with our computational interpretation introduced the missing
mechanism, we were able to see the distinction between what can imaginably
be (S, superpositions), versus what can potentially exist (G = Ψ, alternations),
versus what actually is, τ ·G 7→ 3 + 1d. The distinction between superposition
and alternation in turn allowed the formulation of a coherent story of entropic
transformation from S to G to our own 3 + 1d spacetime. Our information
content calculations, besides being exact - a welcome rarity - seem consistent
with both observation and standard theory, and as well �ll in many details of
what happens before the Big Bang bangs.

It seems appropriate now to remind the reader of the hierarchical structure of
the algebra, and what it might mean when extended beyond G4. This struc-
ture has its foundation in the fact that the algebra's atoms � a, ab, abc, . . . �
whose successive squares are the +−−+ sequence of powers of i, are also �pure
frequencies�, since they are the dimensions onto which Parseval's Fourier decom-
position projects, and simultaneously they also are oscillating co-exclusionary
computations. Thus, in a sense, the G3 particle tables in �6 and Appendix I
and their exact �t to the Standard Model are inevitable. At the same time,
these m-vectors grow (via δ, cf. �symmetry-breaking�) with the size of m in en-
coded complexity, such that one can only think that the detailed construction of
hydrogen, helium, etc. is within reach, with molecular bonding and molecules
next. Huygens' principle of secondary sources is a guide in this endeavor.

We note that the discovery of the tauquernions lends strong support to back-
ground-independent theories [4,9,13]. The tauquernion foundation for 3 + 1d
- via both the Higgs mechanism and entanglement - means that cosmological
theories need no longer feel forced to assume the prior existence of 3+1d, as
does eg. string theory. Rather, the availability of the tauquernions should
encourage the development of background-free theories, which are for the same
reason more conceptually satisfying.

Finally, we note that the Coin Demonstration delivers a decidedly non-computable
bit of information (in the Turing sense), and would therefore seem to constitute
the non-computable element sought by Penrose [18] and others.
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All in all, we are very impressed with the deep correspondence of known and/or
physically meaningful computational algebraic structures to their calculated in-
formation content, and of both of these to the physical phenomena they are
meant to model. Even the subtlest processes seem almost to have been antici-
pated. Together with the present computational interpretation, the power and
elegance of the Z3 geometric algebra can simply not be denied.

- - -

The minimalism of our Z3 dialect of geometric algebra has e�ortlessly and in-
credibly parsimoniously exhibited, via the tauquernions τ , virtually all the
desired and necessary structures, seamlessly interwoven, to plausibly connect
quantum mechanics to 3+1d space-time, both its creation and its content. As a
dividend, we also get a detailed structural theory of dark matter. The complete
overlap of the τ and entanglement spaces, making entanglement the mecha-
nism of gravity, is a wonderful surprise. The information-theoretical analysis
supplies a both detailed and exact �null hypothesis� backdrop for experiments.
Hopefully, the more detailed formulation of this picture in unchained Z, and its
mapping to the body of general relativity and R, will be straightforward, but
nevertheless de�nitely a matter for professional physicists.

In this connection, we think it entirely reasonable that physicists expect, and
even require, that the algebraic and interpretive framework that we have in-
troduced provide the actual mechanisms for the physical e�ects we observe.
Call this information mechanics. After all, we have presented a computational
theory, and mechanism � what must actually happen � is the soul of the com-
putational metaphor.
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Appendix I

The Standard Model in Z3 G3

The Z3 G3 Standard Model presented in this Appendix is in support of the
preceding text, which provides algebraic context and other necessary details
not found here, ie. this Appendix is not self-contained.

Our knowledge of the Z3 G3 algebra has a strong empirical �avor, born of the
fact that it takes only about eight seconds to search the entirety of G3 (6581 = 38

elements, versus days to weeks with G4), so instead of isolating abstract groups
and proving theorems about their properties and inter-relationships, we just
calculate and display all the expressions of interest. We can assure the reader
that this Appendix rests on a thorough census of the forms in G3.

To the reader who would see actual abstract group elements paired o� with ele-
ments of the algebra in accordance with the well-tested tenets of quarkology, we
must plead ignorance. Thus the �ner details of particle types and interactions,
which all work out very nicely, are the algebra's hand at work - we have not
attended to such things, nor needed to. While the presentation in the following
pages more or less exhausts our knowledge of the subject, given the precision
with which the algebra nails all the categories, and their details, plus the iso-
morphism between G3 and the Pauli algebra, we trust that any discrepancies
will turn out to be technical and non-contradictory.

In the classi�cations that follow, the general reasoning is:

� Z3 G is an algebra of distinctions, and every singleton xy, xyz, wxyz, . . .
expresses a logical xnor, the negative of xor. Either way, it's the same/dif-
ferent distinction that is e�ected, and being in Z3 = {0, 1,−1} ensures a
binary classi�cation over ±1 (since never x = 0). This means that the Z3

algebra implicitly classi�es all of its elements as same/di�erent in intricate,
yet minimal, combination; eg. unitary elements possess much sameness.
This is another way to view an expression's information content.

� Stable particles U, V must be unitary, U2 = V 2 = 1, whence their projec-
tors are the idempotents −1±U,−1±V , whence bosons are the nilpotents
ω that satisfy (−1±U)(−1±V ) = (−1±U)(ω)(−1±V ), thus indicating
a causal sequence. Nilpotents and idempotents correspond, respectively,
to the wait() and signal() synchronization primitives.

� The other classi�cations then follow from inner consistency and the Stan-
dard Model itself.
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Excluding 1-vectors, the only three unitary forms in G3 are x+ y+xy, xy+xz,
and x + y + z + xy + xz, and have been found to correspond, respectively, to
neutrinos, electrons, and protons (neutrons = xyz protons).

1. Neutrinos:

Name Form Vector (G2) Signature Bits

ν a+ b+ ab [− − − 0] (0, 1, 3), 3 1.75

νµ a− b− ab [− − 0− ] İ İ
ντ −a+ b− ab [− 0 − − ] İ İ

Σ = a+ b− ab [ 0 + + + ] İ İ
ν̄ −a− b− ab [ + + + 0 ] İ İ
ν̄µ −a+ b+ ab [ + + 0 + ] İ İ
ν̄τ a− b+ ab [ + 0 + + ] İ İ

Σ = −a− b+ ab [0 − − − ] İ İ

Although there are 23 = 8 sign variants here, versus the Standard Model's six
neutrinos, it turns out that in each half of the table, the fourth can be expressed
as the sum of the other three. Indeed, this provides a framework for the mutation
of one neutrino type into another, cf. �the solar neutrino problem�.

We tentatively identify the nilpotent W and Z bosons as being of the form
x+xy (our only `tentatives'), and one can imagine the sum (x−xy)+(y−xy) =
x+ y + xy, a neutrino. The forms ı = ±1 + x+ xy, ı3,6 = 1, are also relevant.

Electrons can be formed the same way: e = xy + xz = (x+ xy) + (x̃+ xz).

2. Electrons:

Name Form Vector (G3) Signature Bits

e ab+ ac [−00 + +00−] (2, 2, 4), 2 4.70

ē −ab− ac [+00−−00+] İ İ
e− ab− ac [0−+00 +−0] İ İ
ē− −ab+ ac [0 +−00−+0] İ İ
µ ab+ bc [−0 + 00 + 0−] İ İ
µ̄ −ab− bc [+0− 00− 0+] İ İ
µ− ab− bc [0− 0 + +0− 0] İ İ
µ̄− −ab+ bc [0 + 0−−0 + 0] İ İ
τ ac+ bc [−+ 0000 +−] İ İ
τ̄ −ac− bc [+− 0000−+] İ İ
τ − ac− bc [00−+ +−00] İ İ
τ̄ − −ac+ bc [00 +−−+00] İ İ

3. Photons: ±x±y±z. There are four pairs of 2 states γ, γ ′, which we take to be
polarizations. Note that the electron projector−1+xy+xz factors as x(x̃+y+z);
and that γγ ′ = 1±(xy+xz). Also, −1+xy+xz = (xy+yz−xz)(xyz)(x̃+y+z).
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4. Mesons, Gluons, and E/M.

Like electrons, mesons too can be constructed via a 2-sum of the nilpotent x+xy
form, and gluons with a 3-sum. The sums that are factorable are nilpotent, and
those that are not are roots of unity. We note that quarks have the form x+yz,
and so mesons can easily consist of two quarks via rearrangement, cf. the �rst
two items below:

� Nilpotent mesons: {X |X = (x+xz) + (y+yz) = (x+y)(1+z) & X2 = 0}
(24) = (x+ yz) + (y + xz)

� Massive mesons: {X |X = (x− xz) + (y + yz) & X2 = ±xyz}
(24) = (x+ yz) + (y − xz)

� Gluons (48): {ä |ä = x+ y + z + xy + xz + yz & ä 2 = ±xyz}

� Electro-magnetic �eld: {E |E = (x+ y + z)± xyz(x+ y + z) & E2 = 0}
(16) = (1± xyz)(x+ y + z)

Note that xyz(x+y+z) = xy+xz+yz is the 3-space quaternion triple associated
with the photon x+ y+ z, while ±xyz is the charge carrier. The last two items
have the same form, di�ering only via charge vs. nilpotence. All four are eigen
forms of xyz.

5. Quarks

The quarks are the only case where the G3 algebra at �rst seems insu�cient, in
that while the x + yz form correctly exhibits three families of 2 × 2, with spin
(±xy,±xz,±yz) and charge (± 1

3 or ± 2
3 on x, y, z), in doing so it seems to use

up all of its information carrying capacity, and then some, and so be unable to
express as well the three colors quarks also can have.

It is appropriate therefore to enquire how a single 1-vector like x might even
be said to carry both ± 1

3 charge and a color designation, especially since it
carries only one bit of information. The answer is that x itself carries only the
± distinction, one bit. The � 13 � is our imputation of x's contribution to a larger
pattern, and indeed the 1

3 + 1
3 + 1

3 = 1 charge-addition business is clearly the
space-like non-Shannon information contained in a 3-co-occurrence, cf. the Coin
Demonstration, where the answer to the question �is there electro-magnetism�
is answered when the third coin is revealed.

Similarly, �color� is our way of distinguishing x from y from z, which is mean-
ingful only when >1 are present. Since quarks and their colors appear only
when there are either two (mesons) or three (hadrons, gluons) quarks present,
so then also are the requisite co-occurring x, y, z's present. So we conclude that
it is permissable to associate with each of x, y, z both a charge and a color.
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We can encode the �colors� red, green, blue (r, g, b) as

r g b r + g r + b g + b r + g + b
l l l l l l l
a b c a+ b a+ c b+ c a+ b+ c

Thus both charge and color are emergent, co-occurrence-based, non-Shannon
distinctions. The �nishing touch is that a particle and its anti-particle must
sum to zero, including both charge and color. We then get the following table
of quarks: 29

Name U D Ū D̄

Form a+ bc −a+ bc −a− bc a− bc
Charge + 2

3
− 1

3
− 2

3
+ 1

3

Color r r̄ r̄ r

Name C S C̄ S̄

Form b+ ac −b+ ac −b− ac b− ac
Charge + 2

3
− 1

3
− 2

3
+ 1

3

Color g ḡ ḡ g

Name T B T̄ B̄

Form c+ ab −c+ ab −c− ab c− ab
Charge + 2

3
− 1

3
− 2

3
+ 1

3

Color b b̄ b̄ b

6. Hadrons; Protons and Neutrons

G3 contains exactly three compound unitary forms X such that X2 = 1. These
are x+ y + xy = neutrinos, xy + xz = electrons, and now the largest of these,
the 96 hadron forms x+ y+ z + xy+ xz, which square to either 1± xyz or +1,
48 of each. Each 48 divides into three groups of 16, depending on which of the
three possibilities xy + xz occurs. By inspection, in the X2 = +1 half, there
are three sub-families, made up from the three families of quarks. Of the 16 in
one such, the 8 + 8 are each two photon polarizations γ and γ ′, the 8 dividing
as 4 + 4 = 2 × 2 + 2 × 2, these being the `conjugate' forms γ ± (xy + xz) and
γ ± (xy − xz), and γ ′ ± (xy + xz) and γ ′ ± (xy − xz).

29Except for U and D, the entries in these tables were not assigned with any particular
knowledge of how they are to correspond to real particles.
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We saw earlier how the mesons can be constructed from two x+xy's, and in so
doing deftly con�ne the quarks so formed to a minimum presence of two. The
same construction can be applied to the hadrons, which are then the sum of
three x+ xy's, rearranged to make three x+ yz's.

In particular, protons are UUD and neutrons UDD, that is, p = 2U + D and
n = 2D+U . Subtracting these, p−n = p+ n̄ = 2U+D − 2D−U = U+D̄, ie.
�UD̄�, a quark and an anti-quark, ie. a meson. Clearly, n − p = �ŪD�, which
symmetry is appropriate for an exchange particle like a meson. And indeed, the
quark model stipulates that mesons be (the sum of) a quark and an anti-quark.

Unfortunately, in our Z3 algebra, 2U = Ū , so �count to 2� also means the �anti�
distinction, and thus we cannot express the UUD vs. UDD distinction as things
stand. Fortunately, we can move to Z5 = {2̃, 1̃, 0, 1, 2} and still remain in G3. 30

Being now able to count to 2, the quark model is straightforward. Let U = a+bc
and D = −a+ bc. Then, with Z5 arithmetic,

p = 2U +D = 2(a+ bc) + (−a+ bc)
n = U + 2D = (a+ bc) + 2(−a+ bc).

whence
p− n = (2a+ 2bc− a+ bc)− (a+ bc− 2a+ 2bc)
= a+ 3bc− (−a+ 3bc) = 2a = (a+ bc) + (a− bc)

= U + D̄ = �UD̄�

just as required; and we note that our proton p = UUD has charge 4
3 −

1
3 = +1

and our neutron n = UDD has charge 2
3 −

2
3 = 0. 31

The success of the shift from Z3 to Z5 to clarify the quark model encourages the
thought of Z7 for G4. This would emphasize the 0mod 4 cycle, which expands
into itself: in the hierarchy of these algebras, they all will be G0mod 4 because,
abusing notation, δ(G0mod4 + G0mod 4) = G0mod 4. We believe this to be a black
hole structure in the limit.

But in the �rst instance this leads to G8, octonions, and the exceptional Lie
group E8, well-known to string theorists. Perhaps Z11 = {5̃, 4̃, . . . , 0, . . . , 5}
is the right lens for G8. 32 The primes 3, 5, 7, 11 appear initially for their

30We defer the interesting foundational question raised here, and instead take the pragmatic
view that while Nature knows what it's doing, we need help focusing, and the shift to Z5 keeps
the focus sharp.

31It is an interesting exercise to examine how the Z3 encoding of p (which of course must be
equivalent) compensates for its inability to count to two by adding in extra and/or intertwined
distinctions. Thus with p = a+ b+ c+ab+ac = a+ (b+ac) + (c+ab), two (non-U,D) quarks
appear, and the a-distinction is decisive.

32On the other hand, we are not fans of octonion multiplicative non-associativity [11].
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symmetry around 0, but as well, their self-identifying property correlates with
the idempotent forms ±1 ± x1x2 . . . xm of the corresponding level m, which
in turn are the similarly self-identifying computational primitives signal(event)
[11].

Returning to the Z3 algebra, we note that the proton form is also the sum
of a photon and an electron. Consider now, in idempotent form, an electron
e = −1+xy+xz = x(x̃+y+z) = xγ, and a proton, p = −1+(x̃+y+z)+(xy+xz),
which factors as (x̃+ y + z) + x(x̃+ y + z) = (1 + x)(x̃+ y + z). Then

ep = (−1 + xy + xz)× (−1 + x̃+ y + z + xy + xz) = −1 + xy + xz = e

= x(x̃+ y + z)× (1 + x)(x̃+ y + z)

= (x̃+ ỹ + z̃)x× (1 + x)× (x̃+ y + z)

= (x̃+ ỹ + z̃)× (1 + x)× (x̃+ y + z)

= (x̃+ ỹ + z̃)(1 + x)× x(x̃+ y + z)

= (x̃+ ỹ + z̃)(1 + x)× (x̃+ ỹ + z̃)x

= (−1 + x̃+ ỹ + z̃ + xy + xz)× (−1 + xy + xz)

= p′e and pe = e′p = p

where we note that the phase of the photon in p has changed from x̃ + y + z
to x̃ + ỹ + z̃ in p′. So, even though the state ep = p′e = e is nominally
�xed (since the idempotents are irreversible) and o�cially static � it's what has
happened and no more has happened yet � we see [tracing the movement of x]
that there is a natural, reversible, electro-magnetic oscillation, or if you like, an
indeterminacy of state, in the electron-proton interaction that is consistent with
our identi�cation of the photon, electron and proton forms.

Finally, the reader should note that summing, using which we have here de-
scribed the build-up of the Standard Model's structure, ie. co-occurrence, is
the entropically favored pathway for combining terms. However, the actual ex-
pansion is much more complicated than merely summing x + xy's as we have
done for expository purposes, which is, rather, simply a limited application of
a spectral basis.33

33The general existence of a spectral basis for G is an open question.
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Appendix II

The Combinatorial Hierarchy

[Continuing from the end of �8:]

There is one last point we wish to make concerning the generation of Gi+j from

Gi×Gj . Let A = {1, a}, whence we are in G1. A-space is ±1±a⇒ 22 = 4 = 22
1

states. Now let B = {1, b}. Then

A×B = {1, a, b, ab}

and the resulting space is of size 24 = 16 = 42 = 22
2

. The next step is

{1, a}{1, b}{1, c} = {1, a, b, c, ab, ac, bc, abc}

which is of size 28 = 256 = 162 = 22
3

. Next is {1, a}{1, b}{1, c}{1, d} =

{1, a, b, c, d, ab, ac, bc, ad, bd, cd, abc, abd, acd, bcd, abcd}

which is of size 216 = 2562 = 65538 = 22
4

.

The sequence of space-sizes increases as the square, 4 → 16 → 256 → 2562,
because of course 22

n

= 22
n−1

22
n−1

. At the same time, the number of elements
in these spaces (a subset of S) is growing even faster, and these two sequences
are related. Table 6 shows the generation process, and the intertwining of the
two sequences is visible in the related powers of 2 that appear.

In the early (Z2) analysis [1] of this construction - the Combinatorial Hierarchy
- it was understood in terms of the state vectors of one level being stacked to
make square matrices, which matrices had to be capable of mapping the resulting
next-level space onto itself. The intriguing aspect then is that while the matrix,
being a stack of basis vectors, exists for n = 1, 2, 3, at n = 4 the number of
co-occurrences explodes, and the ((256)2)2 = 232 basis vectors are completely
swamped by the 2127 co-occurrences they should map among. That is, 4 covers
3, 16 covers 7, and 256 covers 127, but then it's over. So the construction halts,
or must begin anew, or, at least, something new has to happen, seemed to be
the message back then.
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[Three brief comments: (1) SG is that part of S that corresponds to G's al-
ternations; (2) the bottom two rows of the table show only + variants because
the signature collapses all sign variants to the same bin; and (3) the base of
the combinatorics, 2-ary distinctions, is the one that generates the most struc-
ture: 3- and 4-ary distinctions cut o� sooner, and 5-ary doesn't even get o� the
ground [1].]

The present (Z3) perspective sees something new : the line that is crossed is the
one that separates localizable e�ects from distributed ones, ie. weak, strong,
and electromagnetic from EPR and gravity. Either way, the cut-o� occurs with
consistent and physically meaningful interpretations, and it seems clear that
the two instances of the CH (Z2 and Z3) are both isomorphic and being imbued
with the same physical import.

Finally, the observations that 3 + 7 + 127 = 137 ≈ 1
α , α being the �ne structure

constant, and that 3+7+127+2127 ≈ 1038 roughly approximates the electromag-
netism : gravity ratio, plus the above-described interpretation, led Bastin and
Kilmister to re�ne this purely combinatorial approach to 1

α . Their most recent
result [2] calculates this to 137.036011393. vs. the measured 137.035999710(96).
We note that Bagdonaite et alia. report [4] that the proton-electron mass ratio
has not varied in the past 7 billion years.
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