
Synchronization - The Font of Physical

Structure

Michael Manthey

manthey@acm.org

January 28, 2013

Abstract

The computational operation called synchronization, vital for realizing
multi-process systems, is described in terms of geometric (Cli�ord) alge-
bras over {-1,0,1}. This provides a two-way bridge between the worlds of
computation and quantum mechanics, and casts new light on such mat-
ters as quantum non-determinism, mechanism and causality, the explicit
structure of particles (including dark matter), and the like. We dub this
the synchronizational model of quantum mechanics. Oppositely, we show
how to represent any computation - sequential or concurrent - in these
algebraic terms, thus providing a novel and powerful physically-oriented
mathematics for computer science and allied disciplines.

Keywords: synchronization, exclusion, mechanism, causality, sequence, order, non-
determinism, emergent, quantum, combinatorial, concurrent, distributed, process,
co-boundary, hierarchy, Shannon, Parseval, Cli�ord.

1 Introduction

Synchronization is unique among the instructions routinely executed by contempo-
rary computers, in that unlike all the others, it is by de�nition transparent to the
computation executing it. This is so because synchronization addresses the inter-
action between sequential programs, which interaction must not a�ect the correct
operation of the individual interacting programs themselves. A typical use of syn-
chronization is to assure that program processes P1 and P2 exclude each other in
their access to some shared entity, eg. a printer, a disk or memory block, an I/O
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port, etc. Operating systems, real-time systems, and the internet would be literally
impossible to construct without synchronization instructions.

A primitive synchronizer T consists of a notional internal binary �ag - Open or
Closed - that can be changed by two operations, Wait and Signal, denoted hereafter
by W and S. The restriction to binary behavior implies no loss of generality. A
synchronizer must supply the following behavior:

S

W

S

W

in

out

in outT

A Signal sets T to Open, and passes the Signalling process thru;

Successive Signals are the same as a single Signal;

A Wait on Closed T fails, ie. the Waiting process is not passed thru;

A Wait on Open T sets T to Closed, and passes the Waiting process thru;

Simultaneous Waits on the same T result in max one Waiter passing thru;

Simultaneous Signals on the same T are the same as a single Signal.

In the above diagram, Waits enter from the left and exit to the right; similarly,
Signals enter from the bottom and exit at the top. The exclusion of processes
over (say) a printer is realized by placing the use of the printer on the Wout leg,
and thereafter directing the process to perform a corresponding Sin before exiting
entirely; this arrangement guarantees that processes will use the printer serially
(otherwise, output from di�erent processes would be meaninglessly interleaved on
the paper record, which is why synchronization is necessary in the �rst place). More
complex examples can be found in any good operating system textbook.

Implicit in such arrangements is the requirement that synchronization be transparent
to the participating processes: it would be unacceptable for the correct operation of
a program to be dependent on whether it "really" waited to acquire some resource
because some other process(es) happened to be present. Hence, no information (in
the strict Shannon sense) is conveyed between two processes via the act of synchro-
nization. Rather, synchronization induces/enforces a phase shift at the inter-process
level. This phase shift is expressed in the non-deterministic ordering of the processes
as they pass through the synchronizer.

Many people think that the function Wait can be done by polling the condition in
question: while x = 1 do y := y + 0 , which loops until x 6= 1, executing a do-nothing
calculation, adding zero to y, in the meantime.

This approach has several �aws, one being its generalization: what if there are many
di�erent conditions that must be polled, maybe a whole universe's worth? What
if each of the polled conditions is the product of similarly polling processes? Most
of the activity in the universe would consist of polling!1 Replace �universe� with
�Internet� to see the practical implications.

This latter could also be editing one's email inbox, which one can do until x changes.
But what if one's email box is empty? What if there's no y to add to? Then the

1 The empirical fact of photons is a physical reason to eschew the polling model.
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polling of x must constitute the entire Wait ing activity. But this works only if
there's �memory� to hold x so some other process can drop a new value in, and in
general it smacks of technological artifact. Rather, capture the essence of the issue
by de�ning a particular and de�nite operation Wait(e), with exact semantics to be
derived here.

Mathematically, a synchronizer establishes a partial order on the events W and S,
such that a Wait never succeeds unless it has been preceded by a corresponding
Signal. Physically, this ordering is tantamount to imputing a causal relationship
between the S and the subsequent W . Thus one would expect that a mathematical
treatment of the synchronization mechanism will cast new light on such matters as
causality and it's quantum cousin, non-determinism. This expectation is grandly
satis�ed, as will become clear.2

The analysis of synchronization presented here approaches the issues via a geometric
(Cli�ord) algebra G whose generators, the 1-vectors {a, b, c, ..., x, y, z}, represent the
boundary of the system or entity in question vis a vis its surround.3 These vectors
will take their magnitudes from Z3 = {0, 1, 2} = {0, 1,−1}.

Thus a 1-vector will have a magnitude ±1 - one can think of the 1-vector x as a
one bit "sensor", with x = +1 denoting the current existence, in the surround, of
whatever x senses, and x = −1 denoting oppositely that whatever x senses does not
currently exist in the surround. These considerations also imply that 1 + 1 = −1,
whence X +X +X = 0 for any expression X in the algebra.

The algebra's '+' operation denotes concurrent existence, understood as the opposite
of "enforced mutual exclusion". This makes sense because co-existence is implicitly
mutual and commutative: x + y and y + x both mean that x and y co-exist. The
use of + to represent such a formal "parallel composition" of processes is common
in the CS theoretical literature, though the use of vector algebras, as here, is not.

The choice of Z3 = {0, 1,−1} removes the ambiguity present in Z2 = {0, 1}, where
zero wears two hats: the opposite of one, and Void. In Z3, the opposite of +1
is −1 and vice versa; zero (Void) is a meaningless magnitude for a vector, and
occurs only as the result of sums (ie. multi-party computations). For example, the
exclusion of x + (−x) = 0 implies the interpretation "can/does not occur". Thus,
we will never write x = 0 : zero is not a value. This is one of the subtle niceties
of G's being a �coordinate-free� algebra, ie. since {1, a, ab, abc, . . .} are mutually
orthogonal, they implicitly form their own coordinate system, implicitly joined at
the origin, [0, 0, . . . , 0].

[Some asides :

2But no discussion here of the uncertainty principle; the Event Window mechanism of [1] is
however my basis for understanding it.

3Boundary in the homological sense; this will not be elaborated further here.
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0. Notation: lower case letters {a, b, c, ..., x, y, z} denote ordinary 1-vectors; upper
case letters {A,B,C, ..., X, Y, Z} denote arbitrary expressions ("multi-vectors") in
the algebra; the product xy is a 2-vector, xyz is a 3-vector, etc. Expressions written
with {x, y, z} are generic forms, with x, y, z chosen from {a, b, c, ...} without duplica-
tion and with arbitrary sign (modulo local context in the case of ambiguity). Thus
x + yz + xyz can represent a − bc − abc, −b + ac − abc, etc; in that the algebra
is exceedingly symmetric, it is common that expressions having the same form also
have the same algebraic properties. Nested parenthesized expressions specify more
complex computations.

1. The 1-vector generators of the algebra are the "logical bottom", so x cannot take
on the superposed value ±1; superposition enters the picture with the algebra's
anti-commutative product (below).

2. The restriction to Z3, disallowing such expressions as x+2y+3z, is not viewed as
such, since this expression can be re-written as (x+y+z)+(y+z)+z, which contains
the same information regarding bottom-line existence. The algebra's distributivity
and associativity guarantee that the only e�ects that will be missed are those that
encounter cancellation mod 3, ie. coe�cients larger than unity function merely
to express larger amplitudes. Clearly, expansion to Zn , n prime, is desirable at
some point, but as will be seen, fundamental outlines appear when the picture is
unconfused by matters of multiplicity.

3. To minimize clutter we often will use the form 1 +x instead of its square −1−x,
which is idempotent, even though this is not quite `correct'. The reader who �nds
this bothersome can always multiply through by −1.

End asides ]

Besides co-existence, the other thing that can happen with two processes is that
they interact, ie. they "operate" on each other. For this we use the algebra's anti-
commutative multiplication, xy = −yx, for distinct 1-vectors x, y. [The canonical
ordering is alphabetical.] Since we are in Z3, x

2 = 1.

The anti-commutative property applies only to 1-vectors; in general, XY 6= −Y X,
though simple non-commutativity is common. Application of the above rules for
addition and multiplication yields the fact that (xy)(xy) = −1, that is, xy is a
representation of i =

√
−1. Thus the algebra implicitly incorporates all the felicities

of complex numbers, and indeed, exhibits a plethora of i's, whence such entities are
also called pseudo-scalars, roots of unity, and spinors. The 2-vector xy expresses XNOR
(same/di�erent) compactly, and other expressions in G2 express logical AND and OR.
An m-vector expresses an m-ary XNOR, whence our use of the term distinction-space
for G's space.
Finally, the algebra is associative and distributive as usual:

� X + Y + Z = (X + Y ) + Z = X + (Y + Z)
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� XY Z = (XY )Z = X(Y Z)

� X(Y + Z) = XY +XZ and (Y + Z)X = Y X + ZX

This very simple geometric algebra over Z3 = {0, 1,−1} is remarkably expressive,
containing

� Idempotents, XX = X, eg. (−1± x), (−1 + x+ y + xy) = −(1− y)(1− x)

� Nilpotents, XX = 0, eg. x+ xy, x+ y + z, xy + xz + yz

� Bell and Magic operators, cf. entanglement [2].

Given this algebraic apparatus, computational processes are represented directly and
literally by the expressions of the algebra. Sums express concurrent activity ; this is
a formal addition: subtraction X − Y is understood as addition of the negative:
X + (−Y ). Products express action, transformation, and so products are processes.

The following general properties of geometric algebras should be noted:

� The full speci�cation of a geometric algebra is G(p, q), where p is the number of
generators that square to +1, and q the number that square to -1. Our algebra
is thus G(n, 0) = Gn. The Pauli algebra, which spans quantum mechanics, is
isomorphic to G3.

� The set {G3} = {1, x, y, z, xy, xz, yz, xyz} forms an ortho-normal basis for
a 23 = 8 dimensional space; similarly, n generators produce a space of 2n

dimensions. These spaces express abstract distinctions [1], and must not be
confused with relativity's 3+1 space, which latter I insist must be constructed
from the former. 4

� Theorem: For any expression X in the algebra, X has no inverse i� X has an
idempotent factor.

Quantum mechanics having been mentioned, the reader may have noticed that noth-
ing has been said of probability distributions and the like: our Z3 algebra is �nite and
discrete, quite unlike the continuous [−1 : +1] space of statistical correlations. On
the other hand, concurrent computational systems are inherently non-deterministic,
and it is argued that the present computational view, via its discrete and �nite com-
binatorics, pierces the current source-less probabilistic skin over actual goings-on.

4Theorem (Parsefal, 1799): The projection of a function f onto an orthogonal inner-product
space, eg. Gn = O(2n), is the Fourier decomposition of f . Thus Gn is phase space, and every
expression in Gn is a wave operator. This is wave/particle duality in a nutshell. See also [10].
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That is, calculations in the algebra yield unique, concrete outcomes whose combina-
torics give the statistics. It will become clear that in the end, although mechanism
and causality endure, one must give up determinism. Period.5

It is of course the author's hope that the present approach will ultimately translate
into a novel computational physical theory. Being computational, such a theory is
necessarily constructive, and hence can supply the (non-material, information-based)
mechanism whose lack has for so long hampered our understanding of the quantum
world. The story begins with ordinary sequential processes.6

2 Sequential Systems

A sequential program, unrolled into its future, forms a system consisting of a single
process, namely itself - there is no talk of other processes: even if they're present, any
synchronization is transparent, and any interference oblique and unrecognized. The
single most important property of a process is that it is a sequence: the 1-step-at-a-
time order in which its events take place e�ectively de�nes what the process does.
As will be seen, it is crucial not to confuse the three concepts of ordering/sequence,
determinism, and causality, as was done in the early years of quantum mechanics.

Let X, Y, Z be arbitrary expressions in the algebra, and consider the process XY Z,
which states the process "do Z, then do Y , then doX", that is, we always operate on
the left. If any of X, Y, or Z had an inverse, we could algebraically manipulate XY Z
to produce some other order. This will not do! Rather, to enforce sequence, we will
require that none of X, Y, Z has an inverse. In physical terms, this means that they
are irreversible and time-like, and we will intend these three terms interchangeably,
as well as their opposites: possessing an inverse = reversible (which expresses wave-
like activity) = space-like. [Again, this is not physical 3-D space, just space-like
rotations.]

Taking this reasoning further, if X, Y, Z have any reversible factors, they can all
be moved to (say) the end of the sequence, leaving the sequence to consist of only
irreversible factors with a �nal reversible postlude. Because the single reversible
factor can be placed anywhere, choose to exclude it entirely from consideration
without loss of generality. Therefore, a sequential program is represented by a
product of irreversible factors, namely idempotents [ie. SS = S], whose order
therefore cannot be changed.

For example, suppressing much detail, the generic sequential program DoA; DoB;
DoC would translate to the sequence (-1+DoC)(-1+DoB)(-1+DoA), where it is as-
sumed that (-1+DoX) is idempotent. However distant this may seem from an actual

5Note that as a result, the �many worlds� interpretation of QM, created to �explain� its non-
determinism by turning if into process-forks-into-two , is obviated.

6This hope is realized in [10].
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implementation, it captures the fact that ordinary computation is fundamentally ir-
reversible at each step.

Furthermore, an idempotent operator can, on closer examination, be seen to contain
the germ of the concepts of memory and its reading and writing. To see this, take
M to stand for a 1-bit memory. Then M2 = 1 models its persistence independent
of its content, (−1 + M)(M) models a memory Write via the inversion of M (the
actual memory), and, simultaneously, a (destructive) memory Read (the resulting
+1) indicating that M = M; cf. if , below. This is easily expanded to multiple bits,
and as well, captures the common special hardware synchronization instructions
test-and-set and swap. So the DoX example is not all that far from computational
reality after all.

So far, so good. To get a feel for how to use this algebraic representation of com-
putation, analyzing the if-then-else construction is a good warming-up exercise. I
will write if V then X else Y , where V,X, Y are arbitrary expressions representing
arbitrary computations. For simplicity and with no loss of generality, take V = a, a
1-vector ("sensor"). The font indicates that a is `internal' and a is `external', while
still ultimately being the same a, for clarity; mathematically, they're all just a.

"if a" must probe the current state of a: is it +1 (so do X), or is it -1 (so do Y ).

Given that the only states of a are ±1, the next question is how to ascertain which
of these obtains? Clearly, said ascertaining requires measuring a, where again idem-
potent operators play the central role. Consider the following identities:

(1 + a) = (1 + a)(a) (−1 + a) = (−1 + a)(−a) (−1 + a) = (1− a)(1− a)

(1− a) = (1− a)(−a) (−1− a) = (−1− a)(a) (−1− a) = (1 + a)(1 + a)

Taking P = (1 + a) = (1 + a)(a) as an example, multiply P 's rhs out to get a+ aa,
whence we see that the +1 in the lhs can be seen as the product of a with a.

It follows, and this is the key point, that if the a we have in hand - in the rhs's
"(1 + a)" factor - has the same sign as the a we probe - the rhs's "(a)" factor - then
the sign of the scalar will be +1, whereas if the a we probe is actually −a, then the
sign of the scalar will be -1. This also applies if P , oppositely, speci�es "(−a)" and
we �nd "−a" (⇒ +1), or we �nd "+a" (⇒ -1). Finally, take just the scalar value
from (−1 ± a)(±a) to complete the measurement (one can only actually measure
scalars ... like a meter reading). The take-home fact is that this process delivers a
+1 if the a you went after was there, and −1 if not, and no more. More compactly,
write this as the inner product (1 + a)·(a) = <1 + a, a> = ±1.

This is the basic act of measurement. Because (1 + a) has no inverse, the act of
measurement is irreversible, in accordance with contemporary understanding of the

7



equivalence of energy and (Shannon) information. Furthermore, successive measure-
ments using the idempotent form yield no new information, since PP = P. 7

So now we know how to do "if a": we will write (1 + a)(a) or suchlike, depend-
ing. The next issue is to choose the correct continuation depending on what the
measurement on a produces.

The basic idea now is to arrange for the conjugate forms (1 + a) and (1− a), whose
product is zero, to collide on the unwanted branch of the if , thus eliminating that
continuation. A zero means the computation's future is empty, ie. it does not
occur; generating a zero to eliminate an unwanted continuation is a key tool in the
following.

Therefore, write the test in the if as a probe: 1 + a or 1 − a, acting on the actual
a, which can be plus or minus. The then and else branches apply respectively
1 + a or 1 − a to the result of the test, whence one of them will yield 0 (because
conjugate) and the other the correct continuation based on the observed value of
a. There are four possibilities (the | marks o� visually (only) the shared if -probe,
rightmost because it occurs �rst): 8

if probe then left branch | probe else right branch | probe
1 (1 + a)(+a) X(1 + a) | (1 + a)(a) Y (1− a) | (1 + a)(a)

= −X(1 + a) yes = 0 yes

2 (1 + a)(−a) X(1 + a) | (1 + a)(−a) Y (1− a) | (1 + a)(−a)

= X(1 + a) no = 0 yes

3 (1− a)(+a) X(1 + a) | (1− a)(a) Y (1− a) | (1− a)(a)

= 0 yes = Y (1− a) no

4 (1− a)(−a) X(1 + a) | (1− a)(−a) Y (1− a) | (1− a)(−a)

= 0 yes = −Y (1− a) yes

In situation 1 above, we probe for +a with (1 + a), and a is in fact +a; situation 2
has the same probe, but discovers −a; situation 3 probes for −a but discovers +a;
and situation 4 probes for −a and discovers −a.

Notice that if we consider all four possibilities concurrently (ie. left + right, 1 thru
4), we get zero: this situation (namely, a having both values simultaneously) cannot
occur. So instead, combine 1&2 and 3&4 by subtraction to get the desired terms to
double instead of cancel:

7Actually, (1 + a) is the square root ("sqert") of an idempotent, cf. the third column above,
but this is unimportant for our present purposes. Its square, −1− a, corresponds to the standard
projector form 1

2 (1± e) , cf. 2 7→ −1 in Z3 = {0, 1,−1}.
8The yes and no indicate desired (or not) outcomes.

8



1 minus 2: −X(1 + <1 + a, a>)
4 minus 3: −Y (1 + <1− a, a>)

Finally, run 1-2 and 4-3 concurrently, ie. add:

−X(1 + <1 + a, a>) − Y (1+<1− a, a>)
If a = +1 then the Y term drops out leaving −X, the minus indicating the state
change in X. And if a = −1 then the X term drops out, leaving −Y . Just as we
wanted! We see that doing if-then-else necessarily invokes the act of observation.
The form also makes good computational sense, since it transparently describes two
independent processes X and Y , each independently and concurrently testing for its
own condition, only one of which will succeed.

NB: if one tries simultaneously to measure with 1 + a and 1−a, one gets (summing)
an inversion (1 + 1 = −1), but no knowledge of a, in accordance with quantum
measurement theory: if one is to get information, one must specify exactly what it
is one is looking for ... +a or -a, and this cannot be �nessed.

3 Synchronization in the Algebra

Having warmed up with if-then-else, we now tackle synchronization's Wait and
Signal. From the introduction, the required behavior is

a. A Signal sets T to Open, and passes the Signalling process thru;

b. Successive Signals are the same as a single Signal ;

c. A Wait on Closed T fails, ie. the Waiting process is not passed thru;

d. A Wait on Open T sets T to Closed, and passes the Waiting process thru;

e. Simultaneous Waits on the same T result in max one Waiter passing thru;

f. Simultaneous Signals on the same T are the same as a single Signal.

Items e and f refer to situations where there is competition between multipleWaiters
and/or Signallers ; this complication will be deferred for the moment.

The �rst step comes from item b, which in e�ect says SS = S, ie. S must be
idempotent.

Item d says that WT must succeed if T is Open. Therefore initialize T to Open,
which we can do via item a by setting T = S. Item d then reads WT = WS, which
must be non-zero to succeed. 9

9Initializing T to W (ie. T is initially Closed) doesn't work: WT = WW = 0, whence SWT
also yields zero, which it shouldn't. Initializing T to 1 (which is idempotent) is indiscriminate -
any W will succeed.
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Item c in e�ect says (together with item a) that successive Waits without an inter-
vening Signal must fail. That is, WW = 0, so W must be nilpotent. So now we
know the shapes of both W and S, and very speci�c and suggestive ones at that.10

These considerations imply that a sequence like SSWSWSST = SWSWST =
SWSWS, and any sequence with consecutive W 's yields zero, eg. WWSWST = 0.

Process-wise (see �gure just below), there is process P1, which after a sequence of
arbitrary irreversible operations X issues the signal S, creating a so-called `synchro-
nization token'; and then there is process P2 which after a sequence of Y's consumes
this token by Wait ing on it, whereafter P2 continues, executing Z's (read right-to-
left: things begin on the right!):

... X ← X ← X ← S ← X ← X ← X . . . :P1

↓
... Z ← Z ← Z ← W ← Y ← Y ← Y . . . :P2

X,Y,Z arbitrary

Despite the visually implicit timeline in the above two sequences, the Wait in P2

can occur any time `before', `simultaneously with', or `after' the Signal in P1, but
unless the Wait occurs `after' the Signal, process P2 is logically halted at the W.
Whichever of these circumstances obtains, the ultimate result is a logically and
physically seamless transition from P1's SXXX to P2's ZZZW. This sequence too
is a process, process P3:

P3:
S ← X ← X ← X ← ...
↓

... Z ← Z ← Z ← W

The fact that W must be nilpotent means that `whenever' the WS mating actually
occurs, it is just as though P3 occurred seamlessly. An example: when one absorbs
a photon in the retina, at that very instant one is exactly space-like connected with
the state that generated the S - even if the star that generated the photon has `long
since' disappeared. 11

P1 and P2 are classical, in that we imagine them to be deterministic - good old-
fashioned Newtonian / Einsteinian processes. [We might think of the state prepara-
tions preceding an actual quantum experiment, which are classical.] P3, on the other
hand, is non-deterministic, because it was precisely� P 2 � 'sWait that succeeded,
leading to the Z's. If however it had happened that some P4's Wait occurred ahead
of P2's, P3's continuation would be entirely di�erent.

10I am embarassed at how easily this (�nally!) goes, considering the time spent considering the
problem. My big mistake was thinking that WW = W , ie. that successive unsuccessful Waits are
a no-op, just like successive Signals; the error is that the point-of-view must be from inside T ,
whereas the WW = W view, endemic in the computational world, is from outside T .

11It's pretty limited time travel tho - you only get the single bit of information that the photon
carries ... not much of a view!

10



This emergent non-determinism is old news in computer science, though it is most
often noted in the form of unwanted values (cf. the interleaved printer output ex-
ample), rather than the entirely proper non-deterministic ordering induced by the
serialization as just described. In both cases - order or value non-determinism - the
root is the asynchrony of the interaction of two independent processes. Value non-
determinism arises from the existence ofmemory, and unsynchronized access thereto.
When memory is replaced by process (think Herakleitos), all non-determinism be-
comes order non-determinism.12

Said a bit di�erently, if one is to use process as a conceptual primitive, then one
necesarily must accept into the bargain the consequent, unavoidable emergent non-
determinism born of the asynchronous interaction of these same processes.13 I there-
fore advance the claim that asynchrony is the very source of QM's non-determinism.

Popping up conceptually, imagine now P3's form as it evolves into its future. Its
sequence of Z's is just shorthand for an arbitrary sequence of idempotents, for
example (1+a)(1+b)...(1+r). Being idempotents, each of them can act as a Signal to
some matching Wait `out there'. [It is important that they be idempotents, because
this means that the event that the Wait is dependent on has actually physically
occurred.]

Ultimately, if every idempotent in P3 triggers a Wait, and all those Waits ' con-
tinuations do the same, the universe will be populated entirely by utterly non-
deterministic processes that look like (WS)(WS)(WS)...(WS) - these W 's and S's
being notionally distinct. In fact, we see that our classical view of P1 and P2 as deter-
ministic processes puts them in an improbable and miniscule minority - namely that
minority inhabiting/forming classical 3 + 1 space-time, plus all ordinary sequential
computer programs , which includes all �parallelism� and interleaving arrangements.

Finally, consider the issue of competition from multiple Signals and/or Waits for a
given synchronizer. Taking the case of multiple identical Signals, we can consider
combining them concurrently (addition) or as interacting (multiplication). This
yields S + S = −S and SS = S, so both possibilities yield the same result, S, in
that a sign di�erence is irrelevant in the present context.

For identical Waits, the same reasoning yields W + W = −W and WW = 0.
Thinking in physical terms, the choice between the two ways of combining can be
made in terms of energy. If the event S is such that it is appropriate that it trigger
multiple continuations (like a race-starting pistol shot), then additive combination
of Waits is the choice.

If on the other hand it is appropriate that there be only one continuation arising from
aWait, then construing the collision ofWaits as an actual interaction yieldsWW = 0

12Both kinds of non-determinism are the source of the most di�cult bugs, because they are
namely not repeatable, cf. Ullman's �ne novel, �The Bug� [9].

13It is the necessity for exclusion, at every step, that dictates that processes be discrete, cf.
Planck's constant.
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and no continuation for either Waiter, which is entirely acceptable, computationally
speaking. Lacking further knowledge or insight, it seems best to assume the worst
and de�ne competing Waits multiplicatively: WW = 0.

There is one more variant, namely that the multiple Waits and/or Signals are not
identical. It is a fact that for a given T = S, several di�erent W 's will yield
acceptable continuations, and similarly for S's. The sum W1 + W2 need not be
nilpotent, and S1 + S2 need not be idempotent; nor their products (though they're
always irreversible).

Given that what happens is therefore dependent on more details than the nilpotent
or idempotent properties per se provide, this case requires careful algebraic investi-
gation, leading presumably to the symmetries that de�ne conservation laws. How-
soever, the discussion below ignores this complication, but should not be misleading
for that. We will therefore assume that for a given T , all Signals are identical,
and all Waits are identical, with their combination in the case of competition as
described in the earlier two paragraphs.

4 Structures Induced by Synchronization

I argued above that the processes under examination are in fact all of the form
(WS)*, where the * indicates one or more repetitions, and the W 's and S's are
notionally distinct (ie. not identical, but not competing). Thus the processes (WS)*
are `sentences' whose `words' are the various possible juxtapostions of the `phoneme'
W to the `phoneme' S, each such word being a primitive causal act.

With this in mind, the algebra seems to imply that any nilpotent W will work with
any idempotent S, but although manyW/S pairs are `compatible', this is not always
so. For example, in G3:

S = −1 + a+ b+ c+ ab+ ac, T = S

W = a+ b+ c

WT = 0

That is, WT = WS = 0. Physically, the process ("P3") simply ends; this collision
of phonemes might describe an annihilation, but we can at least say that this par-
ticular WS pair produces no future - the computation simply ends. The physical
interpretation then is that this particular S will not enable a process requiring this
particular W as a pre-condition. For example, given that a+ b+ c is a photon, and
if this were true of all 8 photon sign variants (which it isn't), this would mean that
the condition established by S is una�ected by electro-magnetism.

W = a + b + c and S = −1 + d = T turn out to produce SWT = SWS = 0. The
correct interpretation would here seem that the interaction WS negates the further

12



existence of T - it can no longer be Signalled. Whatever the interpretation, it is
clear that SWS expresses a one-shot event.

13



Here is a `compatible' solution in G3:
W = a+b+c WW = 0

S = -1+b SS = S (b could also be a or c)

T = S Synchronizer T is initially open.

ST = SS = -1+b ST = SS = S, and T is still open.

WT = WS = 1-a-b-c+ab-bc T is now closed...

SWST = SWS = 1-b Ie. SWS = -S

WSWST = WSWS =-1+a+b+c-ab+bc Ie. WSW = -W

Notice here that, unlike the two preceding examples, thisWS pair cycles inde�nitely
between±S and±W , what I called `compatible'. Note that the synchronizing occurs
independently (as it were) of the signs of S and W : the synchronizing relationship
is one of orthogonality, whereas sign di�erences are 180o apart, ie. same dimension.
The cyclicity re�ects the external view of T that it cycles between being Open
and Closed, and as well that the virtual synchronization token created by S and
consumed by W is continually conserved.

5 Stepping Back - Implications

The lesson of these examples is that the mathematics itself - representing actual
computational cum physical processes - imposes restrictions - a grammar - on what
can happen. It tells us that only certain WS combinations produce on-going pro-
cesses. Given that WS pairs express causal events, and hence (WS)* is a causal
(though non-deterministic) process, such processes represent the real world of ir-
reversibility, energy expenditure, and entropy creation. These processes are what
we see when we experience the world around us, even though we constantly try to
back-�t them into a deterministic, classical framework.

Do the processes described by (WS)* exhaust the realm of causal events? By the
preceding analysis, a sequence of irreversible actions represents what we traditionally
mean by `causality'. Consider the simplest such sequence: (1 + y)(1 + x). Recalling
that we always operate on the left, one would say that the action (1 + x) caused
(1+y), in that (1+x) establishes 14 the pre-condition for (1+y) to occur. Observing
that (1 +x) = x(1 +x) and (1 + y)3 = (1 + y)(−1− y) = 1 + y, however, we see that

(1 + y)(1 + x)= (1 + y)(−1− y)(1 + x)
= (1 + y)(−1− y)(x)(1 + x)
= (1 + y)(−x+ xy)(1 + x)

14Somehow... the story is tellingly vague; one could well ask, �What prevents writing (1+y) plus
(1+x) here?�

14



where W = −x+ xy is nilpotent,15 and in general we have, for unitary X, Y :

SS = SWS = (1 + Y )(1 +X) = (1 + Y )(−X +XY )(1 +X)

Since this same trick can be used ad libitum on a longer such sequence, we see that
any even such causal sequence can be expressed in (WS)* form; in the odd case,
one S is left over, so the �nal result is S(WS)*.

I therefore claim that the form WS is the causal atom, and there are no others.16

Note however thatWS is time-like, which one associates with causality and entropy,
versus change in general, which can also be reversible (ie. wave-like, eg. the quantum
potential).

This said, the fundamental issue is, to what extent there exists, for every idempotent,
a nilpotent partner. The corresponding statement in ordinary vector spaces is the
Jordan Normal Form theorem (�spectral decomposition�), which states that the set

{p1, p2, p3, ..., pn, pn+1, q1,n+1, q2,n+1 , ..., pr, q1,r , ..., qs,r}

where the pi are idempotents, and the qj,k are nilpotents such that qmj,k = 0,m > 1,
constitutes a basis for the vector space. The generalization to geometric algebras
is apparently an open question [6]. Related aspects are whether for a unitary X
there exists a unitary Y such that XY = −Y X; and the theorem cited earlier (X
irreversible i� X has an idempotent factor).

Regarding the latter, because nilpotents are also irreversible, it implies that for any
nilpotent, there exists a corresponding idempotent, but not necessarily vice versa.
So, what is the physical interpretation of an idempotent with no matching nilpotent,
since the computational interpretation would be that there exist states pi that have
no continuation, but rather just sit there?17

Given that the algebra re�ects the quantum world (though not in the usual terms),
it does not seem unreasonable to try now to connect a little more explicitly to the
physics.

Since the algebra in any particular case is �nite, we can mechanically generate all
its idempotents S and nilpotents W and directly calculate which pairs produce
what processes. This list should then be an exhaustive catalog of what can
happen, and by implication, of the `particles' that are possible. The Appendix
therefore exhibits the complete sets of nilpotents and idempotents of G3. The
nilpotent forms are:

15This is the �retarded� solution, whereas (1+y)(y)(−1−x)(1+x) yields the �advanced� solution,
−y + xy: �y knows about x but not the other way around.�

16Which conclusion the boson/fermion distinction also implicitly encodes. Gravity violates this
view because its causality is not localized: there isn't any W between successive S's because there
isn't any succession = sequence. Gravity's causality is, it turns out, concurrent, a mutual causality,
based on EPR e�ects. See [10]. ]

17I speculate that a larger algebra will always contain such a nilpotent.
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1 2 3 4 5

x+ xy x+ y + (x+ y)z x+ y + z x+ y + x+ xyz(x+ y + z) xy + xz + yz

= x+ y + xz + yz = x+ y + z + xy − xz + yz

Σ =24 24 8 16 8

Column 2 consists of particular pairs from column 1, namely those that form a
nilpotent, and, also, two quarks, since (x+ xz) + (y + yz) = (x+ yz) + (y + xz).

If we instead take triples from column 1, we get column 4, which is also formed from
particular pairs from columns 3 and 5. Thus both sets emergently exhibit pairs
with the form x+ yz, either in two's or in three's. The three `singlets' (x+ yz), aka.
quarks, and pairs and triples thereof, are all boundaries of xyz, the top element of
G3.
Shifting from nilpotents to idempotents, the criterion for −1 +X to be idempotent
is that X2 = 1, that is, X is unitary, and thus a persisting entity. That is, X is a
particle. So, extracting from the Appendix, the particles speci�ed by our analysis
are:

Count : Of Combinatorics
6:6 x 3 families of 2
24:24 x+ y + xy 3 families of 8
12:12 xy + xz 3 families of 4
48:96 x+ y + z + xy + xz 3 families of 16

Noting that the form x+ yz does not exist alone - in that it emerges in pairs from
G2 forms - causes me to see so-called quark con�nement, and thus to believe that
the form x+ yz is the basic quarkish atom. The number 48 is also characteristic of
this family. I therefore claim that among these various forms with x+ yz and their
precursors are to be found the quarks, gluons, hadrons, and mesons of the standard
model of QM; the Appendix o�ers further details.

The appearance of photons with G3 invokes the physics of electro-magnetism, so
by analogy one can reasonably infer that the nilpotents and idempotents of G2
will re�ect the physics of this simpler level. Similarly, this reasoning opens the
interesting possibility that higher-level nilpotents and idempotents (ie. Gn, n > 3)
will throw light on the mechanism of gravity and more. The hierarchy of algebras
Gi→Gi+1 presents a natural and elegant path to uni�cation, though neither attribute
guarantees success. In this connection, cf. the discussion above of Jordan's theorem,
we see how the present approach brings us directly to a super-symmetric theory,
where the idempotents (or rather, their unitary components) are the fermions, and
the nilpotents are the associated bosons.

Howsoever, what might we elucidate regarding dark matter? We know that it is
`dark' because it does not interact with electro-magnetism, so W = x+ y + z must
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yield WT = WS = 0. On the other hand, it does interact with gravity, so the
right combination of a W and an S must yield non-zero continuations.18 I hold
the view [1] that 3 + 1 space-time (and the gravity that shapes it) cannot emerge
before a fourth level of complexity, ie. G4. A weighty argument for this view is that
just as superposition and spin 1

2
emerge in G2 and exhaust the information-carrying

capacity of that level; and that further structure (namely charge) can therefore �rst
emerge in G3, which exhausts its information-carrying capacity; so similarly, gravity
can �rst emerge in G4.

Thus, we seek level 4 (or higher) nilpotents and idempotents that can mediate
our putative gravitational interaction. Consider the following table of powers of
n-vectors:

Level n n-vector (n-vector)2 Level content
0 1 +1 scalars
1 x +1 vectors
2 xy −1 spinors
3 xyz −1 charge
4 wxyz +1 EPR, mass
5 vwxyz +1 3 + 1 space-time

Clearly, the pattern + + − − + + − − ... is that of powers of i =
√
−1, hence the

4-cycle. Many algebraic properties repeat mod 4 - for example 1-vectors and 5-
vectors (with no shared variables) both anti-commute. More to the point, the mod
4 cycling of the algebra means that G4 is implicitly and inherently scalar-like (G0),
and mass is a scalar quantity. Also noteworthy about 4- and 5-vectors is that they
both square to +1, indicating a non-polar form of interaction, as opposed to the -1
of 2- and 3-vectors, indicating the polarity characteristic of electro-magnetism.19 So
G4 and G5 are likely candidates on this score as well.

Unfortunately, G4 contains 316 ≈ 45 million di�erent expressions, discouraging for
the exhaustive search that produced the G3 table in the Appendix. The G4 nilpotent
a+b+c+d+abcd(a+b+c+d), obtained by analogy, produces ambiguous results; the
G5 version is not nilpotent. So although we are stymied at this point, this approach
is both promising and pointed.20

18Cf. [10], the sequentiality assumption strikes again.]
19Bowden [7] shows that levels two and three express Maxwell's equations, using traditional

vector spaces; Bastin and Kilmister [8] pioneered placing gravity at, precisely, level four; they also
calculate 1

α combinatorially to 137.036011393 . . . vs. the measured 137.035999710(96) . . . .
20This reasoning implicitly assumes that gravity's causality is localizable, which it's not [10].
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6 Conclusions

The overall approach described above, of applying vector algebra to computation
qua computation, seems to have been this author's path alone [1]. This is perhaps
not surprising, since computation as commonly understood, ie. ordinary sequential
programs and systems thereof, is dominated by an automata-theoretic view that
leaves little room for a physics of computation.21 Nevertheless, whatever theoretical
view is taken, the constant fact is that computation is, at bottom, about mechanism.
As such, any computation-based theory is fundamentally constructive - at every
stage, it must specify what does what to what, and how. For this reason, any physics
of computation is non-redundant: every statement in such a theory must correspond
1-to-1 to the reality it describes. At the same time, computation's way of describing
processes is independent of its way of realizing same: how an Add instruction is
implemented has zero impact on its actual operation (aside from speed, which is
logically irrelevant to this consideration).

In this context, quantum mechanics is famous for the inscrutability of its mechanism
- after all, how can one have a �nite mechanism that generates the unbounded infor-
mation inherent in `randomness'? Furthermore, careful analyses of the formalism of
quantum mechanics have limited the scope of any hidden mechanism (cf. "hidden
variables") quite severely. It is therefore noteworthy that the present analysis pro-
duces non-determinism as a phenomenon that emerges when one, tellingly, moves
from the consideration of isolated deterministic processes (which isolation is im-
plicitly, but unobviously, classical) to interacting collections of same. The inherent
non-determinism of interacting computational processes is well-known in computer
science, but connecting this solidly to physics, as here, is new.

That the present novel characterization of synchronization - the key mechanism
of multi-process systems - as the product of nilpotent and idempotent forms then
generates what appears to be entire realms of insight - a unique primitive causal form
and whole emergent families of explicit structure - is perhaps to be expected from
such a foundational approach, but satisfying and encouraging nonetheless. One can
even hope that more complex systems - molecular, biological, social - can be treated;
the hierarchical aspect of the algebra should be especially helpful here. Less rosily,
the description above su�ers greatly from the absence of both a group-theoretic
anatomy and concrete input from physics; hopefully others will be encouraged by
the results so far to contribute.

Finally, the once obscure but now familiar type-setting term font denotes the phys-
ical, re-usable form underlying actual printed letters. The various forms that W,
S, and WS can take are indeed the font that Nature uses to write out physical
structure.

21Eg. Penrose's analysis in The Emperor's New Mind - correct, but reaching a wrong conclusion:
synchronization is namely the missing consideration in such analyses.
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Appendix

The Standard Model in Z3 G3

The Z3 G3 Standard Model presented in this Appendix is in support of the preceding
text, which provides algebraic context and other necessary details not found here,
ie. this Appendix is not self-contained.

Our knowledge of the Z3 G3 algebra has a strong empirical �avor, born of the fact that
it takes only about eight seconds to search the entirety of G3 (6581 = 38 elements,
versus days to weeks with G4), so instead of isolating abstract groups and proving
theorems about their properties and inter-relationships, we just calculate and display
all the expressions of interest. We can assure the reader that this Appendix rests
on a thorough census of the forms in G3.

To the reader who would see actual abstract group elements paired o� with elements
of the algebra in accordance with the well-tested tenets of quarkology, we must plead
ignorance. Thus the �ner details of particle types and interactions, which all work
out very nicely, are the algebra's hand at work - we have not attended to such things,
nor needed to. While the presentation in the following pages more or less exhausts
our knowledge of the subject, given the precision with which the algebra nails all the
categories, and their details, plus the isomorphism between G3 and the Pauli algebra,
we trust that any discrepancies will turn out to be technical and non-contradictory.

In the classi�cations that follow, the general reasoning is:

� Z3 G is an algebra of distinctions, and every singleton xy, xyz, wxyz, . . . ex-
presses a logical xnor, the negative of xor. Either way, it's the same/different
distinction that is e�ected, and being in Z3 = {0, 1,−1} ensures a binary
classi�cation over ±1 (since never x = 0). This means that the Z3 algebra im-
plicitly classi�es all of its elements as same/di�erent in intricate, yet minimal,
combination; eg. unitary elements possess much sameness. This is another
way to view an expression's information content.

� Stable particles U, V must be unitary, U2 = V 2 = 1, whence their projectors
are the idempotents −1±U,−1±V , whence bosons are the nilpotents ω that
satisfy (−1 ± U)(−1 ± V ) = (−1 ± U)(ω)(−1 ± V ), thus indicating a causal
sequence. Nilpotents and idempotents correspond, respectively, to the wait()
and signal() synchronization primitives.

� The other classi�cations then follow from inner consistency and the Standard
Model itself.

21



Excluding 1-vectors, the only three unitary forms in G3 are x+ y+xy, xy+xz, and
x+ y + z + xy + xz, and have been found to correspond, respectively, to neutrinos,
electrons, and protons (neutrons = xyz protons).

1. Neutrinos:

Name Form Vector Signature Bits

ν a+ b+ ab [− − − 0] (0, 1, 3), 3 1.75

νµ a− b− ab [− − 0− ] İ İ
ντ −a+ b− ab [− 0 − − ] İ İ

Σ = a+ b− ab [ 0 + + + ] İ İ
ν̄ −a− b− ab [ + + + 0 ] İ İ
ν̄µ −a+ b+ ab [ + + 0 + ] İ İ
ν̄τ a− b+ ab [ + 0 + + ] İ İ

Σ = −a− b+ ab [0 − − − ] İ İ

Although there are 23 = 8 sign variants here, versus the Standard Model's six
neutrinos, it turns out that in each half of the table, the fourth can be expressed as
the sum of the other three. Indeed, this provides a framework for the mutation of
one neutrino type into another, cf. �the solar neutrino problem�.

We tentatively identify the nilpotent W and Z bosons as being of the form x + xy
(our only `tentatives'), and one can imagine the sum (x−xy)+(y−xy) = x+y+xy,
a neutrino. The forms ı = ±1 + x+ xy, ı3,6 = 1, are also relevant.

Electrons can be formed the same way: e = xy + xz = (x+ xy) + (x̃+ xz).

2. Electrons:

Name Form Vector Signature Bits

e ab+ ac [−00 + +00−] (2, 2, 4), 2 4.70

ē −ab− ac [+00−−00+] İ İ
e− ab− ac [0−+00 +−0] İ İ
ē− −ab+ ac [0 +−00−+0] İ İ
µ ab+ bc [−0 + 00 + 0−] İ İ
µ̄ −ab− bc [+0− 00− 0+] İ İ
µ− ab− bc [0− 0 + +0− 0] İ İ
µ̄− −ab+ bc [0 + 0−−0 + 0] İ İ
τ ac+ bc [−+ 0000 +−] İ İ
τ̄ −ac− bc [+− 0000−+] İ İ
τ − ac− bc [00−+ +−00] İ İ
τ̄ − −ac+ bc [00 +−−+00] İ İ

3. Photons: ±x± y ± z. There are four pairs of 2 states γ, γ ′, which we take to be
polarizations. Note that the electron projector −1 +xy+xz factors as x(x̃+ y+ z);
and that γγ ′ = 1± (xy+xz). Also, −1 +xy+xz = (xy+ yz−xz)(xyz)(x̃+ y+ z).
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4. Mesons, Gluons, and E/M.

Like electrons, mesons too can be constructed via a 2-sum of the nilpotent x + xy
form, and gluons with a 3-sum. The sums that are factorable are nilpotent, and
those that are not are roots of unity. We note that quarks have the form x + yz,
and so mesons can easily consist of two quarks via rearrangement, cf. the �rst two
items below:

� Nilpotent mesons: {X |X = (x+ xz) + (y + yz) = (x+ y)(1 + z) & X2 = 0}
(24) = (x+ yz) + (y + xz)

� Massive mesons: {X |X = (x− xz) + (y + yz) & X2 = ±xyz}
(24) = (x+ yz) + (y − xz)

� Gluons (48): {ä | ä = x+ y + z + xy + xz + yz & ä 2 = ±xyz}

� Electro-magnetic �eld: {E |E = (x+ y + z)± xyz(x+ y + z) & E2 = 0}
(16) = (1± xyz)(x+ y + z)

Note that xyz(x+ y+ z) = xy+ xz + yz is the 3-space quaternion triple associated
with the photon x+y+z, while ±xyz is the charge carrier. The last two items have
the same form, di�ering only via charge vs. nilpotence. All four are eigen forms of
xyz.

5. Quarks

The quarks are the only case where the G3 algebra at �rst seems insu�cient, in
that while the x + yz form correctly exhibits three families of 2 × 2, with spin
(±xy,±xz,±yz) and charge (±1

3
or ±2

3
on x, y, z), in doing so it seems to use up

all of its information carrying capacity, and then some, and so be unable to express
as well the three colors quarks also can have.

It is appropriate therefore to enquire how a single 1-vector like x might even be said
to carry both ±1

3
charge and a color designation, especially since it carries only one

bit of information. The answer is that x itself carries only the ± distinction, one
bit. The � 1

3
� is our imputation of x's contribution to a larger pattern, and indeed

the 1
3

+ 1
3

+ 1
3

= 1 charge-addition business is clearly the space-like non-Shannon
information contained in a 3-co-occurrence, cf. the Coin Demonstration, where the
answer to the question �is there electro-magnetism� is answered when the third coin
is revealed.

Similarly, �color� is our way of distinguishing x from y from z, which is meaningful
only when >1 are present. Since quarks and their colors appear only when there
are either two (mesons) or three (hadrons, gluons) quarks present, so then also are
the requisite co-occurring x, y, z's present. So we conclude that it is permissable to
associate with each of x, y, z both a charge and a color.
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We can encode the �colors� red, green, blue (r, g, b) as

r g b r + g r + b g + b r + g + b
l l l l l l l
a b c a+ b a+ c b+ c a+ b+ c

Thus both charge and color are emergent, co-occurrence-based, non-Shannon dis-
tinctions. The �nishing touch is that a particle and its anti-particle must sum to
zero, including both charge and color. We then get the following table of quarks: 22

Name U D Ū D̄

Form a+ bc −a+ bc −a− bc a− bc
Charge +2

3 −1
3 −2

3 +1
3

Color r r̄ r̄ r

Name T S T̄ S̄

Form b+ ac −b+ ac −b− ac b− ac
Charge +2

3 −1
3 −2

3 +1
3

Color g ḡ ḡ g

Name C B C̄ B̄

Form c+ ab −c+ ab −c− ab c− ab
Charge +2

3 −1
3 −2

3 +1
3

Color b b̄ b̄ b

6. Hadrons; Protons and Neutrons

G3 contains exactly three compound unitary forms X such that X2 = 1. These are
x + y + xy = neutrinos, xy + xz = electrons, and now the largest of these, the 96
hadron forms x+ y+ z+ xy+ xz, which square to either 1± xyz or +1, 48 of each.
Each 48 divides into three groups of 16, depending on which of the three possibilities
xy + xz occurs. By inspection, in the X2 = +1 half, there are three sub-families,
made up from the three families of quarks. Of the 16 in one such, the 8 + 8 are each
two photon polarizations γ and γ ′, the 8 dividing as 4 + 4 = 2 × 2 + 2 × 2, these
being the `conjugate' forms γ± (xy+xz) and γ± (xy−xz), and γ ′± (xy+xz) and
γ ′ ± (xy − xz).

We saw earlier how the mesons can be constructed from two x + xy's, and in so
doing deftly con�ne the quarks so formed to a minimum presence of two. The same

22Except for U and D, the entries in these tables were not assigned with any particular knowledge
of how they are to correspond to real particles.
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construction can be applied to the hadrons, which are then the sum of three x+xy's,
rearranged to make three x+ yz's.

In particular, protons are UUD and neutrons UDD, that is, p = 2U + D and
n = 2D + U . Subtracting these, p − n = p + n̄ = 2U + D − 2D − U = U + D̄,
ie. �UD̄�, a quark and an anti-quark, ie. a meson. Clearly, n − p = �ŪD�, which
symmetry is appropriate for an exchange particle like a meson. And indeed, the
quark model stipulates that mesons be (the sum of) a quark and an anti-quark.

Unfortunately, in our Z3 algebra, 2U = Ū , so �count to 2� also means the �anti�
distinction, and thus we cannot express the UUD vs. UDD distinction as things
stand. Fortunately, we can move to Z5 = {2̃, 1̃, 0, 1, 2} and still remain in G3. 23

Being now able to count to 2, the quark model is straightforward. Let U = a + bc
and D = −a+ bc. Then, with Z5 arithmetic,

p = 2U +D = 2(a+ bc) + (−a+ bc)
n = U + 2D = (a+ bc) + 2(−a+ bc).

whence
p− n = (2a+ 2bc− a+ bc)− (a+ bc− 2a+ 2bc)
= a+ 3bc− (−a+ 3bc) = 2a = (a+ bc) + (a− bc)

= U + D̄ = �UD̄�

just as required; and we note that our proton p = UUD has charge 4
3
− 1

3
= +1 and

our neutron n = UDD has charge 2
3
− 2

3
= 0. 24

The success of the shift from Z3 to Z5 to clarify the quark model encourages the
thought of Z7 for G4. This would emphasize the 0mod 4 cycle, which expands into
itself: in the hierarchy of these algebras, they all will be G0mod 4 because, abusing
notation, δ(G0mod4 +G0mod 4) = G0mod 4. We believe this to be a black hole structure
in the limit.

But in the �rst instance this leads to G8, octonions, and the exceptional Lie group
E8, well-known to string theorists. Perhaps Z11 = {5̃, 4̃, . . . , 0, . . . , 5} is the right
lens for G8. 25 The primes 3, 5, 7, 11 appear initially for their symmetry around
0, but as well, their self-identifying property correlates with the idempotent forms

23We defer the interesting foundational question raised here, and instead take the pragmatic
view that while Nature knows what it's doing, we need help focusing, and the shift to Z5 keeps
the focus sharp.

24It is an interesting exercise to examine how the Z3 encoding of p (which of course must be
equivalent) compensates for its inability to count to two by adding in extra and/or intertwined
distinctions. Thus with p = a + b + c + ab + ac = a + (b + ac) + (c + ab), two (non-U,D) quarks
appear, and the a-distinction is decisive.

25On the other hand, we are not fans of octonion multiplicative non-associativity [11].
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±1± x1x2 . . . xm of the corresponding level m, which in turn are the similarly self-
identifying computational primitives signal(event) [11].

Returning to the Z3 algebra, we note that the proton form is also the sum of a photon
and an electron. Consider now, in idempotent form, an electron e = −1+xy+xz =
x(x̃ + y + z) = xγ, and a proton, p = −1 + (x̃ + y + z) + (xy + xz), which factors
as (x̃+ y + z) + x(x̃+ y + z) = (1 + x)(x̃+ y + z). Then

ep = (−1 + xy + xz)× (−1 + x̃+ y + z + xy + xz) = −1 + xy + xz = e

= x(x̃+ y + z)× (1 + x)(x̃+ y + z)

= (x̃+ ỹ + z̃)x× (1 + x)× (x̃+ y + z)

= (x̃+ ỹ + z̃)× (1 + x)× (x̃+ y + z)

= (x̃+ ỹ + z̃)(1 + x)× x(x̃+ y + z)

= (x̃+ ỹ + z̃)(1 + x)× (x̃+ ỹ + z̃)x

= (−1 + x̃+ ỹ + z̃ + xy + xz)× (−1 + xy + xz)

= p′e and pe = e′p = p

where we note that the phase of the photon in p has changed from x̃ + y + z to
x̃ + ỹ + z̃ in p′. So, even though the state ep = p′e = e is nominally �xed (since
the idempotents are irreversible) and o�cially static � it's what has happened and
no more has happened yet � we see [tracing the movement of x] that there is a
natural, reversible, electro-magnetic oscillation, or if you like, an indeterminacy of
state, in the electron-proton interaction that is consistent with our identi�cation of
the photon, electron and proton forms.

Finally, the reader should note that summing, using which we have here described
the build-up of the Standard Model's structure, ie. co-occurrence, is the entropically
favored pathway for combining terms. However, the actual expansion is much more
complicated than merely summing x+xy's as we have done for expository purposes,
which is, rather, simply a limited application of a spectral basis.26

26The general existence of a spectral basis for G is an open question.
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