
The Standard Model in Z3 G3
by

<Michael Manthey>

The Z3 G3 Standard Model presented here lacks an appropriate introduction,
especially regarding the interpretation of the algebra, which is normally to be
found in the papers to which this writing is an appendix, which provide algebraic
context and other necessary details not found here, ie. this 'appendix' is not
self-contained.

Our knowledge of the Z3 G3 algebra has a strong empirical �avor, born of the
fact that it takes only about eight seconds to search the entirety of G3 (6581 = 38

elements, versus days to weeks with G4), so instead of isolating abstract groups
and proving theorems about their properties and inter-relationships, we just
calculate and display all the expressions of interest. We can assure the reader
that this Appendix rests on a thorough census of the forms in G3.

To the reader who would see actual abstract group elements paired o� with ele-
ments of the algebra in accordance with the well-tested tenets of quarkology, we
must plead ignorance. Thus the �ner details of particle types and interactions,
which all work out very nicely, are the algebra's hand at work - we have not
attended to such things, nor needed to. While the presentation in the following
pages more or less exhausts our knowledge of the subject, given the precision
with which the algebra nails all the categories, and their details, plus the iso-
morphism between G3 and the Pauli algebra, we trust that any discrepancies
will turn out to be technical and non-contradictory.

In the classi�cations that follow, the general reasoning is:

� G is an algebra of distinctions, and every singleton xy, xyz, wxyz, . . . ex-
presses a logical xnor, the negative of xor. Either way, it's the same/dif-
ferent distinction that is e�ected, and being in Z3 = {0, 1,−1} ensures a
binary classi�cation over ±1 (since never x = 0). This means that the Z3

algebra implicitly classi�es all of its elements as same/di�erent in intricate,
yet minimal, combination; eg. unitary elements possess much sameness.
This is another way to view an expression's information content.

� Stable particles U, V must be unitary, U2 = V 2 = 1, whence their projec-
tors are the idempotents −1±U,−1±V , whence bosons are the nilpotents
ω that satisfy (−1±U)(−1±V ) = (−1±U)(ω)(−1±V ), thus indicating
a causal sequence. Nilpotents and idempotents correspond, respectively,
to the wait() and signal() synchronization primitives.
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� The other classi�cations then follow from inner consistency and the Stan-
dard Model itself.

Excluding 1-vectors, the only three unitary forms in G3 are x+ y+xy, xy+xz,
and x + y + z + xy + xz, and have been found to correspond, respectively, to
neutrinos, electrons, and protons (neutrons = xyz protons).

1. Neutrinos:

Name Form Vector Signature Bits

ν a+ b+ ab [− − − 0] (0, 1, 3), 3 1.75

νµ a− b− ab [− − 0− ] İ İ
ντ −a+ b− ab [− 0 − − ] İ İ

Σ = a+ b− ab [ 0 + + + ] İ İ
ν̄ −a− b− ab [ + + + 0 ] İ İ
ν̄µ −a+ b+ ab [ + + 0 + ] İ İ
ν̄τ a− b+ ab [ + 0 + + ] İ İ

Σ = −a− b+ ab [0 − − − ] İ İ

Although there are 23 = 8 sign variants here, versus the Standard Model's six
neutrinos, it turns out that in each half of the table, the fourth can be expressed
as the sum of the other three. Indeed, this provides a framework for the mutation
of one neutrino type into another, cf. �the solar neutrino problem�.

We tentatively identify the nilpotent W and Z bosons as being of the form
x+xy (our only `tentatives'), and one can imagine the sum (x−xy)+(y−xy) =
x+ y + xy, a neutrino. The forms ı = ±1 + x+ xy, ı3 = 1, are also relevant.

Electrons can be formed the same way: e = xy + xz = (x+ xy) + (x̃+ xz).

2. Electrons:

Name Form Vector Signature Bits

e ab+ ac [−00 + +00−] (2, 2, 4), 2 4.70

ē −ab− ac [+00 −−00+] İ İ
e− ab− ac [0 − +00 + −0] İ İ
ē− −ab+ ac [0 + −00 − +0] İ İ
µ ab+ bc [−0 + 00 + 0−] İ İ
µ̄ −ab− bc [+0 − 00 − 0+] İ İ
µ− ab− bc [0 − 0 + +0 − 0] İ İ
µ̄− −ab+ bc [0 + 0 −−0 + 0] İ İ
τ ac+ bc [− + 0000 + −] İ İ
τ̄ −ac− bc [+ − 0000 − +] İ İ
τ − ac− bc [00 − + + −00] İ İ
τ̄ − −ac+ bc [00 + −− +00] İ İ
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3. Photons: ±x±y±z. There are four pairs of 2 states γ, γ ′, which we take to be
polarizations. Note that the electron projector−1+xy+xz factors as x(x̃+y+z);
and that γγ ′ = 1±(xy+xz). Also, −1+xy+xz = (xy+yz−xz)(xyz)(x̃+y+z).

4. Mesons, Gluons, and E/M.

Like electrons, mesons too can be constructed via a 2-sum of the nilpotent x+xy
form, and gluons with a 3-sum. The sums that are factorable are nilpotent, and
those that are not are roots of unity. We note that quarks have the form x+yz,
and so mesons can easily consist of two quarks via rearrangement, cf. the �rst
two items below:

� Nilpotent mesons: {X |X = (x+xz) + (y+yz) = (x+y)(1+z) & X2 = 0}
(24) = (x+ yz) + (y + xz)

� Massive mesons: {X |X = (x− xz) + (y + yz) & X2 = ±xyz}
(24) = (x+ yz) + (y − xz)

� Gluons (48): {ä |ä = x+ y + z + xy + xz + yz & ä 2 = ±xyz}

� Electro-magnetic �eld: {E |E = (x+ y + z)± xyz(x+ y + z) & E2 = 0}
(16) = (1± xyz)(x+ y + z)

Note that xyz(x+y+z) = xy+xz+yz is the 3-space quaternion triple associated
with the photon x+ y+ z, while ±xyz is the charge carrier. The last two items
have the same form, di�ering only via charge vs. nilpotence. All four are eigen
forms of xyz.

5. Quarks

The quarks are the only case where the G3 algebra at �rst seems insu�cient, in
that while the x + yz form correctly exhibits three families of 2 × 2, with spin
(±xy,±xz,±yz) and charge (± 1

3 or ± 2
3 on x, y, z), in doing so it seems to use

up all of its information carrying capacity, and then some, and so be unable to
express as well the three colors quarks also can have.

It is appropriate therefore to enquire how a single 1-vector like x might even
be said to carry both ± 1

3 charge and a color designation, especially since it
carries only one bit of information. The answer is that x itself carries only the
± distinction, one bit. The � 13 � is our imputation of x's contribution to a larger
pattern, and indeed the 1

3 + 1
3 + 1

3 = 1 charge-addition business is clearly the
space-like non-Shannon information contained in a 3-co-occurrence, cf. the Coin
Demonstration, where the answer to the question �is there electro-magnetism�
is answered when the third coin is revealed.
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Similarly, �color� is our way of distinguishing x from y from z, which is mean-
ingful only when >1 are present. Since quarks and their colors appear only
when there are either two (mesons) or three (hadrons, gluons) quarks present,
so then also are the requisite co-occurring x, y, z's present. So we conclude that
it is permissable to associate with each of x, y, z both a charge and a color.

We can encode the �colors� red, green, blue (r, g, b) as

r g b r + g r + b g + b r + g + b
l l l l l l l
a b c a+ b a+ c b+ c a+ b+ c

Thus both charge and color are emergent, co-occurrence-based, non-Shannon
distinctions. The �nishing touch is that a particle and its anti-particle must
sum to zero, including both charge and color. We then get the following table
of quarks: 1

Name U D Ū D̄

Form a+ bc −a+ bc −a− bc a− bc

Charge + 2
3

− 1
3

− 2
3

+ 1
3

Color r r̄ r̄ r

Name T S T̄ S̄

Form b+ ac −b+ ac −b− ac b− ac

Charge + 2
3

− 1
3

− 2
3

+ 1
3

Color g ḡ ḡ g

Name C B C̄ B̄

Form c+ ab −c+ ab −c− ab c− ab

Charge + 2
3

− 1
3

− 2
3

+ 1
3

Color b b̄ b̄ b

6. Hadrons; Protons and Neutrons

G3 contains exactly three compound unitary forms X such that X2 = 1. These
are x+ y + xy = neutrinos, xy + xz = electrons, and now the largest of these,

1Except for U and D, the entries in these tables were not assigned with any particular
knowledge of how they are to correspond to real particles.
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the 96 hadron forms x+ y+ z + xy+ xz, which square to either 1± xyz or +1,
48 of each. Each 48 divides into three groups of 16, depending on which of the
three possibilities xy + xz occurs. By inspection, in the X2 = +1 half, there
are three sub-families, made up from the three families of quarks. Of the 16 in
one such, the 8 + 8 are each two photon polarizations γ and γ ′, the 8 dividing
as 4 + 4 = 2 × 2 + 2 × 2, these being the `conjugate' forms γ ± (xy + xz) and
γ ± (xy − xz), and γ ′ ± (xy + xz) and γ ′ ± (xy − xz).

We saw earlier how the mesons can be constructed from two x+xy's, and in so
doing deftly con�ne the quarks so formed to a minimum presence of two. The
same construction can be applied to the hadrons, which are then the sum of
three x+ xy's, rearranged to make three x+ yz's.

In particular, protons are UUD and neutrons UDD, that is, p = 2U + D and
n = 2D+U . Subtracting these, p−n = p+ n̄ = 2U+D − 2D−U = U+D̄, ie.
�UD̄�, a quark and an anti-quark, ie. a meson. Clearly, n − p = �ŪD�, which
symmetry is appropriate for an exchange particle like a meson. And indeed, the
quark model stipulates that mesons be (the sum of) a quark and an anti-quark.

Unfortunately, in our Z3 algebra, 2U = Ū , so �count to 2� also means the �anti�
distinction, and thus we cannot express the UUD vs. UDD distinction as things
stand. Fortunately, we can move to Z5 = {2̃, 1̃, 0, 1, 2} and still remain in G3. 2

Being now able to count to 2, the quark model is straightforward. Let U = a+bc
and D = −a+ bc. Then, with Z5 arithmetic,

p = 2U +D = 2(a+ bc) + (−a+ bc)
n = U + 2D = (a+ bc) + 2(−a+ bc).

whence
p− n = (2a+ 2bc− a+ bc)− (a+ bc− 2a+ 2bc)
= a+ 3bc− (−a+ 3bc) = 2a = (a+ bc) + (a− bc)

= U + D̄ = �UD̄�

just as required; and we note that our proton p = UUD has charge 4
3 −

1
3 = +1

and our neutron n = UDD has charge 2
3 −

2
3 = 0. 3

The success of the shift from Z3 to Z5 to clarify the quark model encourages the
thought of Z7 for G4. This would emphasize the 0mod 4 cycle, which expands

2We defer the interesting foundational question raised here, and instead take the pragmatic
view that while Nature knows what it's doing, we need help focusing, and the shift to Z5 keeps
the focus sharp.

3It is an interesting exercise to examine how the Z3 encoding of p (which of course must be
equivalent) compensates for its inability to count to two by adding in extra and/or intertwined
distinctions. Thus with p = a+ b+ c+ab+ac = a+(b+ac)+(c+ab), two (non-U,D) quarks
appear, and the a-distinction is decisive.
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into itself: in the hierarchy of these algebras, they all will be G0mod 4 because,
abusing notation, δ(G0mod4 + G0mod 4) = G0mod 4. We believe this to be a black
hole structure in the limit.

But in the �rst instance this leads to G8, octonions, and the exceptional Lie
group E8, well-known to string theorists. Perhaps Z11 = {5̃, 4̃, . . . , 0, . . . , 5} is
the right lens for G8. 4 The primes 3, 5, 7, 11 appear initially for their symmetry
around 0, but as well, their self-identifying property correlates with the idem-
potent forms ±1 ± x1x2 . . . xm of the corresponding level m, which in turn are
the similarly self-identifying computational primitives signal(event) [8].

Returning to the Z3 algebra, we note that the proton form is also the sum
of a photon and an electron. Consider now, in idempotent form, an electron
e = −1+xy+xz = x(x̃+y+z) = xγ, and a proton, p = −1+(x̃+y+z)+(xy+xz),
which factors as (x̃+ y + z) + x(x̃+ y + z) = (1 + x)(x̃+ y + z). Then

ep = (−1 + xy + xz)× (−1 + x̃+ y + z + xy + xz) = −1 + xy + xz = e

= x(x̃+ y + z)× (1 + x)(x̃+ y + z)

= (x̃+ ỹ + z̃)x× (1 + x)× (x̃+ y + z)

= (x̃+ ỹ + z̃)× (1 + x)× (x̃+ y + z)

= (x̃+ ỹ + z̃)(1 + x)× x(x̃+ y + z)

= (x̃+ ỹ + z̃)(1 + x)× (x̃+ ỹ + z̃)x

= (−1 + x̃+ ỹ + z̃ + xy + xz)× (−1 + xy + xz)

= p′e and pe = e′p = p

4On the other hand, we are not fans of octonion multiplicative non-associativity [8].
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where we note that the phase of the photon in p has changed from x̃ + y + z
to x̃ + ỹ + z̃ in p′. So, even though the state ep = p′e = e is nominally
�xed (since the idempotents are irreversible) and o�cially static � it's what has
happened and no more has happened yet � we see [tracing the movement of x]
that there is a natural, reversible, electro-magnetic oscillation, or if you like, an
indeterminacy of state, in the electron-proton interaction that is consistent with
our identi�cation of the photon, electron and proton forms.

Finally, the reader should note that summing, using which we have here de-
scribed the build-up of the Standard Model's structure, ie. co-occurrence, is the
entropically favored pathway for combining terms. However, the actual expan-
sion is much more complicated than merely summing x+ xy's as we have done
for expository purposes, which is, rather, simply an application of a spectral
basis.

Acknowledgement. I am greatly indebted to Doug Matzke, who not only prod-
ded me to complete what before had only been a sketch of the Standard Model,
but also wrote the GALG geometric algebra symbolic calculator, without which
this work would not have been possible.
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