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Abstract. The confluence of computer science and quantum mechanics has inspired a
proof of the Riemann Hypothesis for the discrete geometric (Clifford) algebras Cl(n,0)
over Z3 = {0,1,−1}, as expected from the Weil Conjectures. The symptoms of Rie-
mann Fever are clearly evident here - long periods of apathy punctuated by febrile
investigations lasting from minutes to (here, two) weeks, accompanied by alternating
explosions of euphoric insight into cosmic truths, and insight becalmed in a sea of pro-
fundity; and as well a weakness for sweeping conclusions of great import. I recount the
course of the affliction in my own case of this recurrent virulent ailment, which often
leads to addiction to further attacks, and other complications.

Foreword
My first contact with the Riemann Fever virus (though I of course didn’t realize it at the
time) was in high school via Dantzig’s book Number - the Language of Science [11].
It was here that I first (I think) encountered the concept of the prime numbers and the
mysteries surrounding them. The exposure was brief, but the virus nevertheless took
hold. It was strengthened intermittently over the next ten or so years, which interval
ended with me a computer scientist, software division.

There things stood for some 20 years, whence my interest in concurrent systems even-
tually led me to geometric algebras (aka. Clifford algebras). Quite unbidden, a very
early thought here was, and I quote the sober little voice in my head, There’s some-
thing about the primes here. Ach!! This was the early 1990’s. But once again the out-
break was minor, as also with a 1996 item in Science magazine [1] about a connection
between the primes and particle physics, recounted below, that one might otherwise
expect to have resulted in a major attack.

Another ten or so years passed, and finally the toll extracted by the many lesser encoun-
ters over the years culminated in my acquiring a copy of John Derbyshire’s excellent
book Prime Obsession [2]. Hereafter, an incubation period of a couple of years resulted
in the full-blown incident of Riemann Fever that is recounted in the following. It all
began innocently enough, so read further at your own risk... 1

1I have done only minor clean-up and organization of the record, plus added references.
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Introduction
In 1996 Science magazine reported [1] a connection between analytic number theory
and quantum physics whose core is the Riemann zeta function ζ (s) , a statement inti-
mately connected to the distribution of the primes. This result attracts attention because
it is quite unexpected - or perhaps entirely right - that a purely number-theoretic prop-
erty, primality, should have anything to do with the basic structure of reality. However,
the probablistic nature of both the prime number distribution and the quantum formal-
ism itself unfortunately enshrouds the exact nature of the connection.

To this situation we bring the synchronizational model of quantum mechanics [5,6],
which by being directly computational, provides a concrete and detailed mechanism
for quantum processes. By “directly computational” is meant that geometric algebra
functions (1) as a program specification language, and (2) as a language that allows the
symbolic manipulation of this same program “code” according to the usual mathemat-
ical operations, and (3) as a language describing physical reality, all simultaneously.
The underlying computational power of the model (being quantum mechanical) ex-
ceeds that of classical Turing machines, and constitutes a considerable extension of se-
mantic power. The statistical aspect of contemporary physical theory is, in the present
view, the result of the combinatorics of the various discrete algebraic possibilities.

Understand as well that the model describes and applies to any distributed system,
including, especially, self-organizing ones.

More precisely, we use the discrete and finite geometric algebras Cl(n,0) over Z3 =
{0,1,−1}, where the ±1 captures presence/absence, spin, charge, etc. at the price of
compacting relationships based on multiplicity; zero represents Void; and synchroniza-
tion is encoded by idem- and nil-potent elements. Geomeric algebra, being inherently
hierarchical and well-suited to expressing and tracking symmetries and their transfor-
mations, has turned out to be a very apt vehicle for the description of both physics and
computation; see [7,8,9; 5,6].

Notation. Let xi be a unit 1-vector, where |xi| = (xi)
2 = +1; and specify that xix j =

−x jxi for i 6= j. Then the set X = {x1,x2, ...,xn} generates the geometric algebra
Cl(n,0). Both addition and multiplication are associative, and multiplication distributes
over addition as usual; the result of a multiplication can be understood as a rotation of
the one factor by the other. Note that the Lie bracket [A,B] = AB−BA is naturally
defined in geometric algebras. For readability we occasionally write a,b,c, ... for the
xi. Since multiplication is in general not commutative, our convention is “operate on
the left on the operand to the right”.

The hierarchical aspect of the geometric algebras is realized via the graded dimension-
ality of its mutually orthogonal primitive elements 1, {xi}, {xix j}, {xix jxk}, ...,x1x2...xn,
and together these form a basis for the Σ

(n
m

)
= 2n- dimensional combinatorial space of

same-different distinctions that we will be working in. Sums in the algebra represent the
simultaneous existence of said elements (eg. states), and a product AB is understood
to be element A operating on element B. In [5,6] we use the co-boundary operator
δ to construct higher-grade elements from lower grades2 and so the algebra’s graded

2Via the criterion if |∂Y X | = |Y X | = |Y ′| then X = δY and ∂Y ′X = Y . So, for example, the quark-form
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hierarchy

{1, a,b,c,d..., ab,ac,ad, ...,bc,bd, ..., abc, ...,abcd, ...}

should be seen in this constructive, structural light.

Calculating Frequencies

Since the elements of the algebra represent, in general, concrete physical entities, it
is reasonable to require of them that they can be treated as having a wave-like aspect.
For example, what is the frequency spectrum and oscillatory behavior of an arbitrary
element of the algebra, eg. a+b+ab? To answer this, view the fundamental boundary
of the hierarchy as the primitive sensor vector x1 + x2 + x3 + ... , and note that each xi
must necessarily (because finite) oscillate between the discrete values +1 and −1.3

Such an x’s oscillatory behavior can be captured by the discrete scalar function sin(φ +
ωt), where ω is the angular velocity, t is a monotonically increasing time counter, and
φ a phase displacement (choose φ = 0). Thus ωt is a length, and taking t = 1 lets ω

carry the concept of wavelength (and thus frequency) without running into temporal
and measurement issues.

We wish to calculate ∑ sin(xi) - the oscillatory behavior itself - and ∑ fi , the system’s
frequency spectrum. Recall that frequency f and wavelength λ are inversely related:
λ = 1

f .

One might think that ∑ sin(xi) can be calculated via the identity

sin(A)+ sin(B) = 2sin(A+B
2 )cos(A−B

2 )

Unfortunately, it’s unobvious how extend this to sin(A) + sin(B) + sin(C) + ... , al-
though if it can be done, associativity guarantees that we will ultimately get to the
same (top) node, the various paths - associatively speaking - are the same as the co-
boundary relations and will yield the specific behaviours of each corresponding node.

Calculating Σ fi, or rather Σλi, is more fruitful:

∑ λi = λ1 +λ2 + ...= 1
f1

+ 1
f2
+ ...

Frequencies add as

Y = a+ bc induces the existence of the charge carrier X = abc, since Y X = (a+ bc)(abc) = −a+ bc and
|a+bc|= |−a+bc|.

3That is, think of the hierarchy as being a reactive computational entity embedded in a surround that it
senses via these one bit sensors: x =+1 denotes that whatever x senses is currently present in the surround,
and x =−1 means conversely that whatever x senses is currently not present in the surround. The xi are then
combined via δ , recursively, to generate the hierarchy. Zero means “the computation ends”, or “does not
occur” ie. being of neither time-like nor space-like character.
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1
f1
+ 1

f2
= f1+ f2

f1 f2
and 1

f1
+ 1

f2
+ 1

f3
= f1 f2+ f1 f3+ f2 f3

f1 f2 f3

and in general, letting F = { f1, f2, ..., fn} and abusing combinatorial notation, write

∑ λi = λ1 +λ2 + ...+λn =
1
f1
+ 1

f2
+ ...+ 1

fn
=

∑

(
F

n−1

)
(

F
n

)

The frequencies f are a scalar property of the 1-vector sensors that form the boundary
of a system. The simplest case is when the fi all have the same frequency, denoted by
“1” in the following table of hierarchically constructed frequencies:

Level Transition δ λ = ω1 +ω2 = 1
f1
+ 1

f2
= { f1, f2} λ f Interval

a 1 1 1 root

a+b→ ab {1,1} 2 .5 octave

a+bc→ abc {1,{1,1}} 3
2 .66 fifth

a+bcd→ abcd {1,{1,{1,1}}} 5
3 .6 major sixth

a+bcde→ abcde {1,{1,{1,{1,1}}}} 8
5 .625 minor sixth

ab+ cde→ abcde {{1,1},{{1,{1,1}}} 7
6 .86 minor third

ab+ cd→ abcd {{1,1},{1,1}} 1 1 octave as root

abc+de f → abcde f {{1,{1,1}},{1,{1,1}}} 4
3 .75 fourth

abcd + e f gh→ abcde f gh {{{1,1},{1,1}},{{1,1},{1,1}}} 2 .5 octave’s octave

Note that we are creating undertones, not overtones, so the wavelengths grow by the
ratios shown, and the frequencies fall similarly. This reflects the fact that the higher
the level of the hierarchy, the more global and “longer view” it reflects of the system’s
interaction with its surround.4

The physical connection & Riemann
The energy difference E∆ = h f∆ between the first and second frequency levels in the
above table is 1− 0.5 = 1

2 . Similarly, the second-to-third frequency level increment
can be any one of .66−0.5 = 1

6 , 2× 1
6 = 1

3 , or 3× 1
6 = 1

2 , depending on how many of
the co-occurrences a+bc, b+ac, c+ab are present. The f∆ from level 1 to level 3 is
1− .66 = 1

3 , and thence 2
3 and 3

3 = 1. The Z3 algebra normalizes Planck’s constant h
to 1, but decimally, E∆ = 1

2 h. Given the hierarchical context, this energy would then
constitute the inherent rest-energy (a stand-in for mass at this stage of the hierarchical
construction) of particles.

4It’s interesting that the pure-ratio musical intervals show up, although the occurrence here of small-
number ratios in general is to be expected. Still missing: major 2nd ( 9

8 or 10
9 , 8

7 ), minor 2nd ( 16
15 ,

25
24 ), major

3rd ( 5
4 ), minor 7th ( 16

9 , 9
5 , 7

4 ), and major 7th ( 15
8 , 48

25 ). Cf. Harry Partch, Genesis of a Music, p. 68.

4



Howsoever, since Planck’s constant h introduces a fundamental physical discreteness,
we can reason that the shortest wavelength is the Planck length h̃, so λ1 = h̃, and
thus that an arbitrary wavelength λm = mh̃, whence f1 =

1
h̃

and an arbitrary frequency
fm = 1

mh̃
. Substituting this into the sum, we find that the overall spectrum is

∑ λi = λ1 +λ2 + ...= 1
f1
+ 1

f2
+ ...= 1

h̃ ∑
m=1

1
m

It is, in fact, the (divergent) harmonic series: 1+ 1
2 +

1
3 +

1
4 + ... . In the interests of

generality [cf. Riemann], rewrite the sum as

ζ (s) = ∑
m=1

1
ms = 1+ 1

2s +
1
3s +

1
4s +

1
5s + ...

where s is complex and the left-most Greek letter is zeta; the series converges for all
s > 1. Following Euler’s classic manipulation [2], multiply both sides of the above
equation by 1

2s and subtract the result from the original to get

(1− 1
2s )ζ (s) = 1+∑

1
ms = 1+ 1

3s +
1
5s +

1
7s +

1
9s ...

Note that all terms containing a multiple of two have disappeared from the rhs. Now
iterate this process infinitely with 1

3s ,
1
5s , ..., and divide to get

ζ (s) =∏
p
(1− 1

ps )−1 =( 1
1− 1

2s
)( 1

1− 1
3s
)( 1

1− 1
5s
)( 1

1− 1
7s
)( 1

1− 1
11s

)( 1
1− 1

13s
)...

where p ranges over the primes. It now follows that

∑
m

1
ms = ζ (s) = ∏

p
(1− 1

ps )−1

Thus an infinite sum over the integers equals an infinite product over the primes! It
is therefore not surprising that this Riemann zeta function ζ (s) is intimately related to
fundamental issues in prime number theory. Interpreting this physically, summing ζ (s)
[in its Σ-form] over all s is some sort of universal wave function.

The last variation on the theme is the Möbius function, µ , the reciprocal of ζ :

µ(s) = 1
ζ (s) = ∑

m=1

µ(m)
ms

= ...(1− 1
11s )(1− 1

7s )(1− 1
5s )(1− 1

3s )(1− 1
2s )

µ(s) = 1− 1
2s − 1

3s − 1
5s +

1
6s − 1

7s +
1

10s − 1
11s − 1

13s +
1

14s +
1

15s + ...
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The terms of µ follow the sign-rules:

µ(1) = 1
µ(m) = 0 if m has a square factor (which eliminates all ms, s > 1)

µ(m) :
µ(m) = -1 if m is a prime or the product of an odd number of different primes
µ(m) = +1 if m is the product of an even number of different primes

Recalling the path we have followed, we began in the multi-vector world, asking the
question, What is the frequency spectrum of (say) a+ b+ ab? This led us to the har-
monic series, which led us to ζ and µ , both of which are, however, creatures of the
scalar world. Thus, dimensionally speaking, we have descended from 2n- dimension-
ality to the single dimension of the scalars = Cl(0,0).

From physics to computation

So the question arises, is it possible to translate these scalar relationships back into
vector language? Yes - by re-doing Euler’s derivation, but this time in Cl(n,0) over
Z3 = {0,1,−1}. Anticipating what is to come, we can drop the complex s because
we have the imaginaries automatically with the geometric algebra, since for i 6= j,
(xix j)

2 = −1; furthermore, we can drop s itself because the idempotent property we
will employ flattens all exponents to 1. Nevertheless, the key factor properties remain,
and it will become clear that it is idempotents that correspond to the scalar primes.

We begin with an initial “state vector” S0 = 1+ q2 + q3 + ... and require that q2 = q,
ie. that q be idempotent. Now manipulate, just as before, to get S1 = S0− q2S0 =
(1−q2)S0. In general,

Si = Si−1− qi+1Si−1 = (1−qi+1)...(1−q3)(1−q2)S0 = PS0

where P is the product (1− qi+1)...(1− q3)(1− q2). The q’s must be idempotent be-
cause if (eg.) q2 = ±1, then the fact that q is a factor of P is quickly lost, and with it
the subtractive cancellation of q’s multiples. The sum S0 cannot have finite length be-
cause each multiplication generates terms that only match terms further out, so S0 must
always be longer than qi+1Si−1 if the desired subtractive cancellations are to occur.5

Suppose, now, that qi =−1+ui, where u2
i = 1, and further, associate the integer i with

the vector qi so that q jk = q jqk, for example q6 = q2q3. Then

S0 =
1+(−1+u2)+(−1+u3)+(−1+u2)

2+(−1+u5)+(−1+u2)(−1+u3)+(−1+u7)

+ (−1+u2)
3 +(−1+u3)

2 +(−1+u2)(−1+u5)+ ...

5Although there may be a practical work-around, eg. require qr = 1, whence r puts a ceiling on mean-
ingful i. The situation reminds one of the “renormalization” issue in quantum field theory.
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corresponds to the sequence 1,2,3,4, ... . Now multiply through by “2” = q2 = (−1+
u2) to get

(−1+u2)S0 = (−1+u2)+(−1+u2)
2 +(−1+u2)(−1+u3)+(−1+u2)

3+

+ (−1+u2)(−1+u5)+(−1+u2)
2(−1+u3)+(−1+u2)(−1+u7)+ ...

and subtract this from S0 to get

S1 = (−1−u2)S0 = 1+(−1+u3)+(−1+u5)+(−1+u7)+ ...= q̄2S0

where q̄ =−1−u is the conjugate of q =−1+u. Clearly, all the “even” terms - those
with the factor (−1+u2) - have disappeared from the rhs and only the “odd”-numbered
terms remain. Now repeat the process with q3 to get

S2 = (−1−u3)(−1−u2)S0 = 1+(−1+u5)+(−1+u7)+ ...= q̄3q̄2S0

which rhs is missing all terms having “3” = q3 as a factor. Clearly, if we continue this
process, we will arrive at

Sk = Pk+1S0 = q̄k+1...q̄3q̄2S0 = 1+(−1+qk+2)+(−1+qk+3)+ ...

At this point, Euler argues [in the scalar case] that the remaining terms on the rhs all
eventually disappear, and hence that one could [analogously] write Pk+1S0 = 1; but this
is not possible here because Pk+1 = q̄k+1...q̄3q̄2 is not a reversible process and hence
cannot have S0 as an inverse.6,7 Rather, one must argue that the frequency of the
remaining terms (after some point) is so low as to be insignificant.

Even with this, however, we still cannot divide through by Pk+1 to get ζ = 1
Pk+1

, ie. the
zeta function for Cl(n,0), because ignoring small terms doesn’t change the fact that
the very concept P−1

k+1 is meaningless when Pk+1 by definition has no inverse. Rather,
we must be satisfied with ζ ’s inverse, namely µ = Pk+1S0. Despite this, however, the
zeroes of µ are in the same places (ie. arise from the same factors q̄) as the zeroes of
ζ , since it’s the same P; we will return to this later.

At this point, rather, the question is, what does Pk+1 look like when multiplied out? This
polynomial can be constructed combinatorially: define the set U = {ū2, ū3, ū5, ...}, let
m be the grade of the m-vector, and as before, abuse combinatorial notation to write

µ = 1+∑ µ j = 1+ ∑
n=1

(−1)m
(

U
n

)
6Theorem: For all X ∈Cl, X has no inverse iff X has an idempotent factor.
7Notice, by the way, the fascinating interplay between the concepts of constructiveness and of a limit at

∞ versus physical ir/reversibility - only in the (by definition unrealizable) limit is the 2nd Law of Thermody-
namics ultimately violated.
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= 1− (u2 +u3 + ...)+(u2u3 +u2u5 + ...)− (u2u3u5 +u2u3u7 + ...)± ...8

Note the following properties of this sum:

1. If there are an odd number of u-factors, then the sign of the m-vector term will be
negative because each u has negative sign.

2. If there are an even number of u-factors, then the sign of the m-vector term will be
positive.

3. There are no multiples of any qi present.

These are precisely the conditions that define the scalar version of µ .

It should be noted that the conjugate forms that are an implicit part of this story fol-
low naturally from the different possible orderings in the “non-prime” q−terms in
S0. Alternatively, the order in which the qi are accumulated into P will also gen-
erate the conjugates: one could have either (−1 + u)(−1 + v) = 1− u− v + uv or
(−1+ v)(−1+u) = 1−u− v−uv.

Thus (−1± u)(−1± v)(−1±w) has actually six different orderings, and all of these
are members of the same (irreversible) conjugate set of order 2nn! . 9

The Riemann Hypothesis for Cl(n,0)

This form of the µ-function (ie. with qi = −1+ ui, where u2
i = 1) produces a poly-

nomial each of whose terms is a unique singleton m-vector ui...u j, each of which has
magnitude |ui...u j| = 1. Furthermore, all these m-vectors are mutually perpendicular,
and so a sum of such terms is the diagonal of the corresponding hypercube and there-
fore must satisfy the Pythagorean relation

|µ1|+ |µ2|+ ...+ |µk|=
[
|µ1|2 + |µ2|2 + ...+ |µk|2

] 1
2

Let ` count the number of q-factors currently making up µ in its product form. Then,
at any such stage ` of µ’s growth, sum the 1’s of µ(`)’s sum-form terms:

M(k) =
k
∑
j=1
|µ j| ≤

[
k
∑
j=1
|µ j|2

] 1
2

= O(k
1
2 )

8Lest the reader worry that this Clifford µ doesn’t show fractions as does the original scalar µ , notice
that the m-vector terms are all self-inverse, squaring namely to ±1, whence µ

−1
i = ±µi. So this equation

could as well be written as 1− 1
u2
− 1

u3
... (except, of course, that geometric algebras don’t do “division”).

The inverse relationship between wavelength and frequency is thus maintained quite literally.
9Which for n = 3 yields 48; Cl(3,0) is isomorphic to the Pauli algebra.
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where k is the number of terms. M(k) is called Merton’s function [2], and by showing
that M(k) =O(k

1
2 ), we have proven the Riemann Hypothesis for the spaces covered by

Cl(n,0). 10 This is the expected result, due to DeLigne’s proof of the Weil Conjectures,
which cover a wide range of spaces [3,4]; see the Appendix.

It is worth pointing out that q̄ = −1− u is written in Z3, whereas in the real numbers
R, the Z3 minus one becomes −1 = 1

−1 7→
1
2 , that is, all the non-trivial roots of µ ,

and therefore of ζ , lie on the line x = 1
2 . Presumably, the mapping −1 7→ 2 speaks to

the trivial “even” roots of ζ . These two mappings match the usual statement of the
Riemann Hypothesis: that all the non-trivial roots of ζ lie on on the real line x = 1

2 .

Applications

We have thus arrived at the relationships

µ = Pk+1S0 = (q̄k+1...q̄5q̄3q̄2)(1+q2 +q3 +q4...) = 1+qk+2 +qk+3 + ...

=
(1−(u2+u3+ ...)+(u2u3+u2u5+ ...)−(u2u3u5+u2u3u7+ ...)± ...±u2u3...uk+1)S0

In the following, we try to tease some useful insights out of these. We will henceforth
refer to Pk+1 generically as P.

[It is well at this point to recall that the components qi =−1+ui of the state S0 possess
implicitly both a discrete particulate aspect - in that the ui are unitary - and a wave-like
aspect - being finite, the ui’s magnitudes can only oscillate.]

The Process Concept

Thinking back to how P was created, the original sum S0 = ∑qi with q2 = q, and
particularly q jk = q jqk, in effect specifies all possible products of the individual idem-
potent q’s. Since these products are not commutative, there is an ambiguity as to their
ordering; we allow any ordering. There is a second ambiguity in the order in which the
various q’s are chosen to become the factors of P, and again, we allow any ordering.
As noted earlier, these various orderings are Cl’s way of generating conjugate forms.
Howsoever, with all possible orderings and the fact that the q’s are irreversible, we have
all possible time-like processes.

Looking at this computationally, and recalling that the mathematical expression is the
literal mechanism of the computation, the rhs 1+qk+2 +qk+3 + ... is the state arrived
at after the application of the process/operator P to an initial state S0. Indeed, aside
from the fact that S0 is not unitary, the form PS0 = 1+ qk+2 + qk+3 + ... describes a
measurement P made on a state S0 that yields the result “Yes [= the +1] , the state S0
was found in the environment, which by the way is now equal to qk+2 +qk+3 + ...”.

10That is, for n > 0. If n = 0, we are in the scalars, whose only idempotents are 02 = 0 and 12 = 1, whence
the qi =+1 and S0 = 1+Σ1, which in Z3 is ill-defined, since the sum can be any of 0,1, or −1.
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A geometric algebra’s multiplicative associativity masks the necessarily absolute se-
quentiality of the physical process, cf. the group E8, which is namely not associative.
The lack of associativity can namely enforce (eg.) a sequential right-to-left application
of P’s factors qi to the current state. The price of directly tracking this aspect of phys-
icality is, however, the loss of both manipulative and conceptual flexibility, the latter
because it welds the use (and the physics) into a sequential view of what is in truth
a distributed concurrent system that cannot, even in principle, be so captured (see the
Coin Demonstration in [6]).

Put differently, by willy-nilly enforcement of sequentiality via non-associativity, one
loses the natural (and very useful) non-specification of order-of-evaluation of a geo-
metric algebra. Of course, one can explicitly specify the useful exceptions in either
case, but at least in the computational case - where one is namely mostly interested
global properties over all possible orderings - associativity is the more useful.

Synchronization & Causality

We can say that P is a sequential computational process because it is established in [5]
that each of P’s component actions, the idempotent operators qi, is semantically equiv-
alent to the computational synchronization operator Signal(ui). The Signal operation is
paired with Wait(ui), which is nilpotent, and the pair correspond to the fermion/boson
distinction in particle physics. Together they constitute the necessary and sufficient op-
erators to construct any time-like, irreversible, computation - including “parallel” and
“distributed” ditto, and as well the construction of memory and if-then-else [5].

Being nilpotent, Wait has no inverse. So, via the idempotence-iff -no-inverse theorem
footnoted earlier, it follows that every nilpotent is grounded in a matching idempotent.
For example, the nilpotent -a+ b+ c , a photon, is related to the electron ab+ ac via
a(−a+b+ c). One does the following to get a nilpotent out of an idempotent.

The key is two unitaries that anti-commute: if U,V are two such unitaries, then all sign-
variants of U +UV are nilpotent. Since U2 =V 2 = 1 and UV =−VU , the operate-on-
the-left sequence

(−1+V )(−1+U)

can, using the identities

(−1+V ) = (−1+V )(−V ) and (−1+U)2 = (−1+U)

be converted into (−1+V )(−V )(−1+U)(−1+U)

= (−1+V )(V −VU)(−1+U)

where W = V −VU is the desired nilpotent, playing the role of Wait(U). The corre-
sponding computational process is Signal(U); Wait(U); Signal(V ), where we now read
left-to-right in computer program order:

10



First, signal U ...

“whilst in some other process”

... wait for U to occur, and only then signal V .

Thus, for the event Signal(V ) to be causally connected to the (preceding) event Sig-
nal(U), there must exist the mediating nilpotent entity W . Indeed, if such a W doesn’t
exist, then the two events −1+U and −1+V aren’t causally connectible.11,12

So, to cover all possible causal sequences in the present case, we must have at our
disposal all the “prime” idempotents qi = −1− ui and all the u j that anti-commute
with each ui. Then the sequence (−1−ui)(−ui−uiv j)(−1− v j) exists and is a causal
sequence for all ui,u j.

Arbitrary Idempotents

Notice that any choice of the idempotents q = (−1+u) will generate the Riemannian
result.

Example. The 1-vector product (−1+ u)(−1+ v)(−1+w)... generates a complete
polynomial, ie. one having all 2n possible m-vectors. This set of idempotents satisfies
all the steps of the above proof, but so do the similar products of 4-vector idempotents
−1+wxyz, of 5-vector idempotents −1+ vwxyz, etc. So conceivably the appearance
of the scalar prime number statistics in the physical context is the result of the structure
of the argument itself, rather than an appearance of the scalar primes per se (although
I do not myself believe this).

Howsoever, this reveals (or perhaps merely systematizes) a way to model, at a strictly
higher level, things like atoms and molecules, both of which clearly exceed the expres-
sive power of Cl(3,0). In a software specification and development context, it specifies
how to structure a distributed system and verify its functionality one level at a time.

Example. The unitary ui’s have been written in lower case to encourage the interpre-
tation that the ui are singleton m-vectors xi...x j, but this need not be the case, as this
property was never invoked in the above. Rather, the ui can also be multi-vectors like
Ui = u+ v+uv or U j = uv+uw, which are also unitary. This means that the products,
like UiU j, in the sum-form of µ can generate multiple terms, but these new µi do not
change the Pythagorean result and the conclusion that Σ|µ| ≤ O(k

1
2 ).

In a software context, the coalescence of such compound unitaries out of the sea of sin-
gleton unitaries is an implicit and unavoidable implication of the µ-hierarchy, and they

11One can understand such connecting nilpotents in a very concrete computational way, namely that each
corresponds to a trip around the hardware interpretive Ifetch loop, which causally connects two successive
instructions (= the idempotents). Alternatively, one can think of an idempotent −1+U as being the self -
boundary of its associated unitary U : ∂−1+UU ∼=−1+U , which can only be connected to another such self-
boundary−1+V by an entity that namely has no self-boundary, namely a nilpotent, since ∂WW =WW = 0.

12Let “;” mean causally connected and “:” mean not so connected; and let A,B,C,D be idempotent. Then
the sequence (A;B) : (C;D) can be rewritten as (AB)+ (CD). Similarly, the sequence A;(B : C);D could
mean any of A(B+C)D, A(BD+C), or A(B+CD), depending. The algebraic notation is more precise and
flexible.
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themselves can be the subjects of causal sequences ...(−1+U j)(−1+Ui).... This in
turn prompts the question: what do we do about these?? Are they an opportunity to ex-
pand the object concept, and to build a meta-hierarchy, corresponding to the hierarchy
of the elements, molecules, meta-materials, cells ... ?

Or, like undocumented logic, are these implicitly-appearing compound unitaries a threat
to privacy and security? Note that as long as a given Ui is never actually assigned a
name, it cannot be explicitly addressed, and so both appears and dissolves automat-
ically. Verification of system functionality, ie. the proof that it does or does not do
X , is simplest when compound unitaries are denied objective existence, since then the
system has a very tractable wave-like mathematical structure. On a practical level, this
reversibility greatly improves system stability. Once assigned a name, however, a com-
pound unitary becomes reified, and requires that the system now ensure its persistence
and accessibility; the chance of deadlock escalates, while at the same time the entity’s
very existence encourages the creation of ever more irreversible processes.

Universal Hierarchy

Notice that the terms of the sum-form of P express all
(

n
m

)
= 2n m-vectors, and

hence is a basis of the space spanned by Cl(n,0). Computationally, this space is the
space of all possible distinctions.13

With this in mind, take the µ-form of our relationships and suppress the detail by
defining various Q’s and UPk :

µ = PkS0 = (q̄k...q̄5q̄3q̄2)(1+q2 +q3 +q4...) = 1+qk+1 +qk+2 + ...= 1+Qk+1,...

=
(1− (u2 +u3 + ...)+(u2u3 +u2u5 + ...)− (u2u3u5 +u2u3u7 + ...)± ...±u2u3...uk)S0

= (1+Upk)(1+Q2,3,4,...)

= 1+Upk +Q2,3,4,...+ Upk Q2,3,4,... = 1+Qk+1,...

The one’s cancel, and re-arranging we get

Upk Q2,3,4,... = −
(
Upk +Q2,3,4,...,k

)
wherein we see that the application of Upk to the total initial system state Q2,3,4,... will
invert Upk and Q2,3,4,...,k, which is exactly what should happen (since the q’s by nature
invert their object), but there are no q’s (only u’s) in Upk , so this formulation of the
relationships shows that the inversions [can validly be seen to] occur via the rotations

13Every m-vector, m > 1, calculates (scalar) exclusive-or = same/different, via (-1)(+1) = (+1)(-1) = -1 and
(+1)(+1) = (-1)(-1) = +1. Also encoded is A excludes B vs. A co-occurs with B.
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of the Qi by the Ui rather than by multiplication by −1 as in the qi version. That is,
both the wave and the particle views are simultaneously valid. Also, depending on the
specific situation, the transition can be either reversible or irreversible.

Physically, UPk is the so-called quantum potential Ψ. As noted earlier, the m > 1
elements of this space can be constructed using the co-boundary operator, so (eg.)
δ (u+ v) = uv and δ (u+ vw) = uvw. Physically, this construction takes place dynam-
ically and continually, and defines via the reversibility of its components the resonant
structure of Ψ. But the interpretation of this structure as “the quantum potential” is
restrictive, since, as we have seen, any set of unitary entities can be the elements of
such a structure: call it instead the causal potential. The causal potential.

The Object Concept

The individual Ui are the computational objects in this model, that is, entities having a
persistent - though not necessarily permanent - existence. This persistence is signified
by the fact of their unitarity: U2

i = ±1, meaning that Ui encompasses its own inverse,
and thus can change without changing, so to speak. It does this by possessing a persis-
tent internal state that is different from its name: ab is the name, while +ab and −ab
both encode and display the internal state. [We discuss naming later.]

As a software structure, a given Ui has two modes of operation, one reversible and
(hence) space-like, and the other irreversible and (hence) time-like. The latter captures
the objects definable by contemporary programming languages (eg. Java - they’re all
the same on this), since a given Java object is only active when it is entered via one of
its functional ports, and once that function has been carried out, the object is once again
utterly passive. This scenario corresponds to Ui being operated upon by the idempotent
−1 +Ui. It is strings of such activations, from Ui to U j to Uk, that constitute the
processes defined by Wait and Signal (and by procedure calls generally).

The space-like aspect of a given Ui derives from its place in a surround of other similar
objects, as defined by Upk . The changes in the surround sensed by the primitive 1-
vectors xi, x j are combined pair-wise (via δ ) to produce the 2-vector object xix j, which
in turn can be combined with xk to produce the 3-vector object xix jxk, etc. Thus every
m-vector, 1 < m < n, is both the collector of impulses from “below” (ie. from its
constituent boundary entities) and the distributor of its own (consequent) state to the
higher-level objects of which it is itself a boundary entity. This upward ascent δ is close
kin to the calculus operation of integration

∫
, and similarly, the reversed, downward

flow of the manifestation of the hierarchy’s potential corresponds to differentiation
[both denoted by ∂ ].

Hierarchical (ie. structural) relationships and hierarchy traversal are space-like, since
∂δ = 1= δ∂ if the Cauchy-Riemann conditions XU =YV and YU =−XV hold, which
they do if X ,Y,U,V are reversible, which they are in the present case.14

14It can also be shown that ∂
p
X Q = 0 = δ

q
QX for some p,q > 1, ie. “the boundary of the boundary equals

zero”, as does the co-boundary of the co-boundary. One needs the definitions ∂ (1) = 0 = δ (1), since we’re
not taking ∂ as an operator over the algebra, but rather as an element of the algebra, nor using the (usual,
grade-reducing) dot product for ∂ . We invoke de Rham’s theorem by analogy, not by right.
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The upshot is that as software objects, the Ui are always active, at least conceptu-
ally. This trait, when combined with the reversibility conferred by unitarity, means that
the Ui , seen from without, oscillate, and hence the entire hierarchy can be seen as a
complex wave-like structure. The upward flow (and steadily decreasing frequency)
performs a Fourier-like decomposition of the input vector, the primitive boundary
x1 + x2 + ... , and the downward flow is a complex (but literal) reflection of that in-
put. Notice that from an external point of view, the discrete particle-like aspect of the
individual Ui has entirely disappeared from view ... one sees only waves and construc-
tive and destructive interference - the wave function of the system as a whole!15

From a programming point of view, every Ui is an instance of the same abstract object,
namely one that δ -combines two other objects into one, and itself is δ -combinable into
another such object. The general conceptual view is “abiding” rather than the usual
“looking at”. The communication regime is broadcast-listen rather than the ubiqui-
tous and inherently time-like request-reply of virtually all programming languages and
networked interactions.

Finally, the possession of an explicit wave-function UP, a system’s space-like aspect,
constitutes a definitive criterion, otherwise lacking, of what it takes for a system to
be “distributed”. The dependence of the state of every locale on the state of every
other locale, is both the ideal of a “distributed system” and exactly what a wave-based
structure provides. Think of the waves in a bathtub - the height of every point on
the surface is dependent on the heights of all the other points, and understand that
this is a mere scalar version of the conceptual complexity that is organized in this
fashion. Remote procedure call, ie. request-reply, is the wrong primitive for building
truly distributed systems!16

Discrete Physics

The recent book The Origin of Discrete Particles by Bastin and Kilmister [10] cal-
culates the value of the inverse fine structure constant α−1 to one part in 107 on a
closely reasoned and purely combinatorial basis.17 The combinatorics of the present
graded algebraic hierarchy match those of their Combinatorial Hierarchy (which is over
Z2 = {0,1}), which forms the structural basis for their calculation. Kilmister and the
present author agree that there is most probably an isomorphism, though its exact form
has not been investigated. Both structures are based on exclusive-or.

Bastin and Kilmister place the process of constructing knowledge at the center of their
analysis:

The idea which underlies combinatorial physics is that of process. The most fundamen-
tal knowledge that we can have is of step-by-step unfolding of things; so in a sequence.

15[Three years later: Theorem (Parseval, 1799). The projection of a function F onto an orthogonal inner-
product space (eg. Gn : O(2n) ) constitutes the Fourier decomposition of F .]

16The right primitive is Co[A,B], which blocks until states A and B co-occur. JavaSpaces is the right kind
of platform for this. Co[A,B], and it’s complement, NotCo[A,B], are the author’s extensions to the Linda
distributed programming paradigm, from which JavaSpaces derives. See [4]/Linda, and [6].

17Yielding 137.036011393... versus the latest empirical value, 137.035999710(96)... .
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This is the kind of knowledge we have of quantum processes, and that fact becomes spe-
cially evident in the experimental techniques of high-energy physics. Such a process is
necessarily combinatorial but not conversely. [p. 3]

The fundamental act in Bastin and Kilmister’s analysis, the empirical act, is that of
finding an entity in the otherwise entirely unknown surround and determining whether
or not it is novel. They prefigure the derivation of µ = PkS0, which similarly specifies
“take an element of the otherwise unknown universe [ie. pick a uk from S0 and form
q̄k = −1− uk] and compare it to what is already known [ie. form q̄kPk−1 = (−1−

uk)(1+
k−1
∑

m=1

(
U
m

)
) and note if any ukU j =±1], and if it is novel [ie. for no element

of
(

U
m

)
is ukU j =±1] , adjoin uk to what is already known [ie. add uk to

(
U
m

)
,

the P hierarchy in its sum-form]”.

Note that the acquisition of this explicit knowledge is shown, via q’s idempotence, to
be an irreversible process.

Naming

There are still many loose ends in the frequency calculation, eg. when the frequencies
fi differ. Nevertheless it seems apparent that the appearance of the prime integers in
physics is connected to the individual measurement process - that is, particular prime
numbers are associated with particular individual processes. The product P defines
these associations.

One can though make an independent argument for why the xi , the 1-vector genera-
tors of the algebra, should be assigned, literally, prime-number frequency values. This
follows from computer science, in particular from algorithms for achieving mutual
exclusion between computational processes. As noted above, the computational prim-
itives for accomplishing this are called, generically, Wait(e) and Signal(e) where e is
some event/state. There are many ways to do this and algorithms for realizing Wait and
Signal have a long history of interest and research.18

Relevant here is a mutual exclusion algorithm for distributed contexts, Lamport’s Bak-
ery algorithm, inspired by the take-a-number systems often found where there is a
queueing problem. The nice technical feature of this algorithm is that it separates (the
mechanism of) the determination of access sequence from (the mechanism of) grant-
ing access per se, and is thus well-suited to today’s logically and physically distributed
systems. The feature of interest in the present context is that the algorithm demon-
strates the intimate relationship between the integers and the fundamental concept of
the discreteness of events and their ordering into processes.

The key point is that the integers also provide unique names for the participating enti-
ties, and the issue of naming is, like mutual exclusion, a central concern in computer
science, both practically (a name is a de facto address) and theoretically (granting a
name opens the door for the object concept and the type and attributes of said objects).

18See the writings of C.A. Petri, E.W. Dijkstra, L.A. Lamport, and many others; and/or any good textbook
on operating systems.
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Thus the Bakery algorithm inspires the thought that the same numbering strategy could
be used simultaneously for both sequencing and naming in an elegant marriage of func-
tionalities.

Returning now to ζ and µ , we indeed see how an integer-based numbering in the sum-
form of ζ is turned into a prime-based [and nearly Gödel] numbering of the hierar-
chical m-vectors in the sum-form UP. Indeed, we see that the [integer-based] ordering
ambiguities mentioned earlier are automatically swept aside to produce unique, self-
identifying m-vector names that are namely independent of the ordering of the changes
they connect via their co-boundary relationship (eg. in ab, flipping a and flipping b).
It is particularly telling, in this context, that every possible combination over the ui is
automatically constructed, and uniquely named en route.

Finally, returning to the physics, having shown that the mechanism for accomplishing
the phenomena uses (indeed, needs) the primes to construct the literal names of the
unitary entities constituting the causal potential’s structure, it is but a short and natu-
ral step to hypothesize that Nature herself uses this naming scheme “to keep track of
things”, and that, therefore, the 1-vector unitaries xi physically too are identified by

having wavelengths that are prime multiples of the Planck length
∼
h. By extension, the

m-vector names xi...x j...xk, where i, j,k here are primes, would indicate the m-vector’s
frequency components, and similarly but more intricately for compound unitaries like
a+b+ab and ab+ac.

And then, quite suddenly, the Fever broke.

Those wishing to avoid further infection should contemplate the definitions and truths
regarding ζ as expressed by the Weil Conjectures in the Appendix, expressed with
the admirable and exquisitely inscrutable clarity and precision that we all expect, and
usually get, from our mathematical colleagues.

If you do not understand this appendix, you will likely be spared further trauma. On the
other hand, a prophylactic application of these conjectures can limit the scope of further
attacks, as indicated by the present case. And certainly, an ignorance of whatever-the-f
Etale cohomology is will go a long ways too.19

If however you succeed in decoding the conjectures, there is a very good chance that
you will instead be drawn into the very maw of the Riemann Hypothesis, namely over
R, the worst and most incurable form of Riemann Fever. Only a proof of the Hypothesis
itself can cure it ... and forget the fame and the $106 prizes - they’ll be too late.

Few mathematical problems can lay claim to such a powerful combination of
elementary nature, breadth of applications, and depth of theory inspired in the search

for a proof.

Brian Osserman, A Concise Account of the
Weil Conjectures and Etale Cohomology [3]

19Reader exercise: Exactly why, according to the conjectures, is the proof presented not news?
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Appendix - The Weil Conjectures [4]

Suppose that X is a non-singular n-dimensional projective algebraic variety over the
field Fq with q elements. The zeta function ζ (X ,s) of X is by definition

ζ (X ,s) = exp
(

∞

∑
m=1

Nm
m (q−s)m

)
where Nm is the number of points of X defined over the degree m extension Fqm of Fq.

The conjectures state:

1. Rationality. ζ (X ,s) is a rational function of T = q−s. More precisely, ζ (X ,s) can be
written as a finite alternating product

2n
∏
i=0

Pi(q−s)(−1)i+1
=

P1(T )···P2n−1(T )
P0(T )···P2n(T )

where each Pi(T ) is an integral polynomial. Furthermore,

P0(T ) = 1−T , P2n(T ) = 1−qnT ;

and for 1≤ i≤ 2n−1, Pi(T ) factors over C as ∏
j
(1−αi jT ) for some numbers

αi j... .

2. Functional equation and Poincaré duality.

ζ (X ,n− s) =±q
nE
2 −Esζ (X ,s)

or equivalently

ζ (X , 1
qnT ) =±q

nE
2 T Eζ (X ,T )

where E is the Euler characteristic of X . In particular, for each i, the numbers α2n−i,1, α2n−i,2,...

equal the numbers qn

αi,1
, qn

αi,2
, ... in some order.

3. Riemann hypothesis. |αi, j| = q
i
2 for all 1 ≤ i ≤ 2n− 1 and all j. This implies that

all zeros of Pk(T ) lie on the "critical line" of complex numbers s with real part k
2 .

4. Comparison. If X is a (good) "reduction mod p" of a non-singular projective variety
Y defined over a number field embedded in the field of complex numbers, then the
degree of Pi is the ith Betti number of the space of complex points of Y .

The Weil Conjectures were proven to be true by Pierre Deligne in 1973.
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