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Abstract 
 

Quantum computing concepts are described using geometric algebra, without using complex 
numbers or matrices. This novel approach was developed in the first author’s Ph.D. dissertation 
in Electrical Engineering at University of Texas at Dallas (May 2002). This research was built 
upon the mathematical and conceptual foundation of co-occurrence and co-exclusion previously 
developed by the second author. Using a topologically derived algebraic notation that relies only 
on addition and the anticommutative geometric product, a qubit is simply a co-occurrence of two 
orthonormal state vectors. With this qubit definition, this paper describes the following quantum 
computing concepts: bits, vectors, states, orthogonality, qubits, classical states, superposition 
states, spinor, reversibility, unitary operator, singular, entanglement, ebits, separability, 
information erasure, destructive interference and measurement. These central quantum concepts 
can be described simply in geometric algebra, thereby facilitating the understanding of quantum 
computing concepts by non-physicists and non-mathematicians. In fact, after exhaustively 
analyzing all the discrete qubit states using the geometric algebra notation, it appears there is no 
other meaning for a co-occurrence of two state vectors other than as a qubit.  
 

1. Introduction 
 
Quantum computing has received significant attention since the announcement of Shor’s 
algorithm [1], which demonstrates that quantum computers can solve some extremely 
computationally intensive problems more efficiently than any classical algorithm. Unfortunately, 
hardware and software engineering for quantum computers requires different sets of skills from 
either research on the physics of quantum computing or hardware/software engineering for 
traditional computers. The goal of this paper is to lay a foundation for hardware/software design 
for quantum a computer that is accessible to traditional engineers and computer scientists. 
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For newcomers to quantum computing the learning curve is steep for two primary reasons. First, 
quantum computing is based on the principles of quantum physics and is typically expressed 
mathematically using complex Hilbert space, which is a high-dimensional, complete, vector 
space, using complex numbers and matrices. The matrix notation is concise and compact, but 
also opaque to non-mathematicians. Second, quantum computation has many new information 
concepts that do not naturally arise in classical computing and are therefore unintuitive to 
traditionally trained engineers and programmers. The difficulty of understanding these new 
concepts is compounded by the use of Dirac’s “bra-ket” notation [2], since the reader must first 
comprehend the foreign- looking mathematical notation. This article takes the approach of 
focusing on quantum computing concepts while relying on the notationally simpler geometric 
algebra [3,4], which uses neither explicit complex numbers nor matrices.  
 
This article is targeted at engineers and programmers with a basic understanding of computer 
science and mathematics who are interested in learning about quantum computing. From this 
perspective, quantum computing is nothing more than an information system with very particular 
“bit” properties and the approach of this relatively short article is to show the design of a 
mathematically oriented process structure that naturally represents and models these properties. 
The key bit and quantum-properties and their relatively simple mathematical representation 
using geometrical algebra will be introduced when required and only as needed. Bits form the 
building blocks of the computing industry and computer professionals have very strong intuitions 
about them, so this article begins with that perspective. 
 
2. Bits Represented as Vectors 
 
A bit expresses a binary distinction, the smallest unit of information, and is physically the space 
reserved (or bit capacity in a disk, memory, register, or communications channel) for a single 
binary state value. The typical choice is to use the implementation-specific values 0/1 to 
symbolically represent mutually exclusive state pairs such as False/True, dark/light, or 
male/female. Each binary-valued bit is usually given a symbolic name such as a or b to facilitate 
describing how multiple bit-states causally interact (i.e. c = NOT a, d = a AND b, using the 
Boolean algebra conventions with the standard logical operators NOT, AND, OR, etc). A 
classical bit can only have two possible complementary states and most importantly, these states 
are required to be mutually exclusive. For example, if states a = True and NOT a = False, then bit 
a cannot simultaneously be both True and False. Multiple bits can be concatenated to express N 
= 2n unique states, where n is typically 8 (a byte), 16 or 32 bits. The N resulting states are also 
mutually exclusive. 
 
The defining properties of classical bits (i.e. a, b, c) are: 1) as above, the complementary state 
pair is mutually exclusive and 2) the state of each bit can be independently changed. These 
precise properties can be mathematically represented using vectors (i.e. a, b, c - in bold font), 
where each bit is denoted by a distinct vector. This simple choice of representing bits as vectors 
has many formal mathematical consequences that will be described in footnotes so as not to 
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disrupt the flow of the article. Two orthonormal vectors (orthogonali and unit length) are 
graphically displayed in Figure 1 as a horizontal and a vertical line that define a plane. 
 

 
Figure 1. Two orthonormal vectors a and b 

 
A binary state is represented here using the ± orientation or direction of the bit vector and  not its 
length, which is always one. Using vector a, bit state a = True can therefore be denoted as +a 
(orientation +1) and NOT a = False can be denoted as –a = a  (orientation –1). The scalar 
orientation coefficient c preceding the vector ca can have the real values of c = +1, –1, or 0, 
which naturally leads to a ternary state system (similar to tristate logic) with symmetric binary 
states of +1 = + and –1 = –, whereas 0 0a =  indicates vector a has no presence. The choice of 
mapping bits/states into vectors/orientations defines a binary representation that is a formal 
linear system and can be shown to be Boolean complete [4]. A linear representation is important 
when building such a bridge between computer science and physics [5].  
 
Table 1 shows how to define the traditional “addition” operator, denoted as +, for this linear 
algebraic system. The addition of two vectors can be visualized as the address of a point in the 
plane of Figure 1, but the vector orientation coefficients follow the usual scalar addition rules in 
Table 1. This algebra is limited to the set of unit scala r values {0,+1,–1}, because this limited 
scalar set is sufficient to express all necessary distinctions. Table 1 represents modulo 3 addition 
because repeatedly adding +1 produces the sequence of values 0 => +1 => –1 => 0. This choice 
is isomorphic to the modulo 3 set of values {0, 1, 2} but is symmetric around 0. Addition of any 
elements in the algebra always produces another element in the algebra.  
 

Table 1. Scalar Addition table for a + b = b + a  
 

a + b b = 0 b = +1 b = –1 
a = 0 0 +1 –1 

a = +1 +1 –1 0 
a = –1 –1 0 +1 

 
Using Table 1, an important propertyii for addition is + = =−a a a a . This codifies the existence 
of an additive inverse, complement, or negation state for each state in the algebra. Mutual 
exclusion of two complementary states can now be expressed as + = 0a a , which means the 
vector a can only point in one direction at a time because the value 0 has the special meaning of 

                                                 
i With i  = inner product; 0=a bi  means a and b are orthogonal and 1=a ai  means collinear 
ii With mod 3 arithmetic then 2a = –a because 2a = a + a = –a so 2 = –1 and also a/2 = a/–1 = –a 
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cannot occur. The symmetric +/– states naturally describe the destructive interference of bit 
vectors, which is critical for quantum computing. Ternary logic is different from traditional 
Boolean algebra (states of 0/1) because the latter has no third state, and hence confounds the 
states “the opposite of one” and “nothing”. Since addition is commutative (a + b = b + a) but 
subtraction is not (  − ≠ −a b b a ), we use the convention that the sign of the coefficient must 
always be associated with the particular element, for example, = + = + = +− −a b a b b a b a . 
 
The interpretation of 0 to mean cannot occur [6] is subtle, yet conceptually meaningful, and has 
these consequences. First, since 0 means cannot occur then a scalar multiplication of state vector 
by zero, such as 0 = 0a , simply means that the vector a does not occur or exist and can be 
removed without any additive effect on an expression (i.e. x + 0a = x). Therefore, the highlighted 
cells in Table 1 focus on the addition rules to input states with only the non-zero binary values. 
These cells can be summarized as the rule: like states invert and differing states pair-wise cancel. 
Second, assigning a state equation to 0 and then solving for the roots determines the orientation 
values of states that cannot occur thereby representing the non-solutions of the system, which is 
the opposite of the conventional meaning. Third, in order for two vectors to exactly cancel, they 
must be simultaneous, so addition means concurrency in time. This interpretation is consistent 
with the non-causal nature of quantum computing states. Addition of states is called a co-
occurrence [6] because it is impossible to distinguish between (or count) two identical tokens 
unless they are presented exactly concurrently. Two such identical tokens presented together 
represent 1 bit of information because it is impossible to know how many truly exist when 
presented sequentially [6]; {q.v.} chapter 4. 
 
With this brief groundwork in place for classical bits, mutually exclusive states, state inversion 
and the addition operator (with its interpretation of concurrency), the following section 
introduces how to represent a qubit (or quantum bit) plus the other properties required to change 
the qubit state. 
 
3. A Qubit Represented as the Sum of Two Vectors 
 
A qubit requires four states rather than the two states represented by a classical bit, yet still 
represents only one classical bit because the vectors are constrained to be redundantly encoded. 
Therefore, a minimum of two classical bit vectors {a0, a1} must be used to represent those four 
possible states. Since the two distinct and orthonormal bit vectors must both simultaneously be 
allowed to have any binary value, the obvious proposal for a qubit uses addition with all possible 
non-zero vector orientations: 
 

Qubit: A = ±a0 ±a1                                                          (1) 
 
There are four possible variations of signs for this sum and they are assigned the state labels A0 = 
+a0 –a1, A1 = –a0 +a1, A – = –a0 –a1, and A+ = +a0 +a1, whose meaning will soon be obvious. 
Similar to the process used for a single vector, we can show that A0 + A1 = 0 or A0 = –A1 because 
(a0 – a1) + (–a0 + a1) = 0, which means that states A0 and A1 are mutually exclusive. Likewise, 
states A+ and A – are mutually exclusive, because A – + A+ = 0 or A –= –A+. As with A0 and A1, the 
states A+ and A – are pair-wise collinear with the origin (and later these two sets themselves are 
shown to be orthogonal). Table 2 follows directly from Table 1 when all possible combinations 
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of non-zero orientation values are analyzed (only highlighted cells in Table 1). It is convenient to 
think informally of this table as the non-solutions from solving Ax = 0, where the vector 
coefficients destructively cancel. 
 

Table 2. Valid qubit states highlighted for ±a0 ±a1 
 

Row k a0 a1 A1 = +a0  a1  A0 = +a0  a1  A+ = +a0  a1  A – = +a0  a1  
R0 – – 0 0 + – 
R1 – + + – 0 0 
R2 + – – + 0 0 
R3 + + 0 0 – + 

Anti-symmetric sums          
are classical states 

Symmetric sums are 
superposition states 

Binary 
combinations of 

input states A1 = R1 – R2 A0 = R2 – R1 A+ = R0 – R3 A– = R3 – R0 
 
The four main rows of Table 2 show all the non-zero binary combinations of the orientations for 
vectors {a0, a1}. The four right columns show the possible expressions (of symmetric and anti-
symmetric sums) with the non-zero or valid states highlighted. The vector and state names were 
chosen to represent the particular spin properties of the qubit, which acts like a redundantly 
coded classical bit with complementary states A0 = –A1. State A0 is selected when coefficient c0 
for vector a0 is c0 = + and state A1 when the coefficient c1 for a1 is c1 = +, where c0 = –c1 
Because of these properties A0 and A1 are called the classical states of the qubit. Similarly, state 
A+ is defined when vector coefficients c0 = c1 = + and state A – when vector coefficients c0 = c1 = 
–, thereby representing the superposition states (where A – = –A+). Figure 2 graphically illustrates 
these redundantly coded vector and state relationships. 
 

 
Figure 2. Vectors and States for qubit A = ±a0 ±a1 

 
It is evident from Figure 2 that the two pairs of states {A0, A1} and {A –, A+} are compound states 
that can be represented as a vector (or line) thru the origin, but at a 45 degree angle to either axis. 
Therefore the sum of vectors also acts like a redundantly encoded vector, because it represents 
two complementary states. Because of the redundancy, there is more than one way to represent 
the one classical bit’s worth of states in a qubit. Since the two pairs of states in Figure 2 are 90 
degrees apart (which means orthogonal), they are called out of phase representation choices. 
From the physics perspective, state a0 is the spin up state (and –a0 means NOT a0) while state 
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a1 is the spin down state (and –a1 means NOT a1). The two classical states {A0, A1} represent a 
symmetrical spinning top pointing up or down. The two superposition states {A –, A+} act like a 
horizontal gyroscopic top supported on one end, so is simultaneously in both/neither of the 
up/down states. In quantum computing, each spin state is represented as a vector, whereas in 
classical computing each bit is represented as a vector. 
 
The next topic is the operator that switches between classical and superposition states or phases, 
which requires multiplication. Table 3 defines the conventional scalar multiplication table for the 
preceding ternary values. The terms multiplication and product are overloaded in physics and 
mathematics, because products exist not only for scalars, but also for vectors: the inner products, 
outer products, tensor products and cross products. Not to be outdone, the primary multiplication 
operator of geometric algebra is called the geometric product. The geometric product of a state 
and an operator (applied on the right) produces a new state, where both states and operators are 
geometric algebra expressions. 

 
Table 3. Scalar Multiplication table for a * b = b * a 

 
a * b b = 0 b = +1 b = –1 
a = 0 0 0 0 
a = +1 0 +1 –1 
a = –1 0 –1 +1 

 
Scalar multiplication is straightforwardi and the highlighted cells in Table 3 represent the non-
zero binary combinations of the vector orientations. Those cells are equivalent to the XNOR 
(exclusive NOR) logic behavior, which is summarized as: like states produce +1 and differing 
states produce –1. XOR/XNOR based logic is identical to the odd/even parity operators and a 
direct result of the multiplication operator being related to XOR is the unexpected multiplicative 
inverse property: 1/a = a (when a 0≠ ). This property is true for both scalars and vectors. As 
will be shown next, vector multiplication is slightly more complicated in geometric algebra but 
this complexity enables much simplicity elsewhere.  
 
3.1. Geometric Product and Graded N-vectors 
 
The geometric product can now be defined for the multiplication of vectors. As the name 
implies, the geometric product is based on topological principles. The first simple premise is that 
multiplying two vectors (a b) produces an area- like object called a bivector, which is a different 
mathematical object type than either a scalar or a vector. Multiplying 3 vectors together (a b c) 
produces a volume-like object called a trivector. This is easy to understand by realizing that a 

scalar is a grade-0 object (denoted as 0A ), a vector is a grade-1 object 1A , a bivector is a 

grade-2 object 2A , a trivector is a grade-3 object 3A , and in general an n-vector is a grade-n 

object nA  that defines an n-volume. Adding different grade objects creates a multivector of 

                                                 
i Scalar multiplication is naturally closed over the ternary values {0, –1, +1} 
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the form; A = 0A + 1A + 2A + ... + nA . A geometric algebra Gn spanned by n orthonormal 
vectors contains N = 2n unique graded elements found by expanding the expression 
(1+a)(1+b)… and defines 3N unique multivectors, (i.e. G 2 => 34 = 81). In our definition, a qubit 
is a multivector: the sum of both grade-1 vectors in G2. 
 
Any bivector has an orientation coefficient just as a vector expression, but with the unusual 
geometric product identity a b = – b a. This property means that the geometric product is not 
commutative (more precisely, it is anticommutative) and is simply the algebraic expression of the 
right-hand rule used in physics. The bivector orientation coefficient can be imagined as the right-
hand thumb pointing to the front (or back) of a plane defined by a piece of paper and is depicted 
in Figure 3. The orientation is defined as the coefficient of any n-vector product in any grade 
spacei, so is equivalent to the parity of the vectors of the n-vector in a particular order. This 
article places the vectors in standard alphabetically sorted order. Since the geometric product ii 
does not have an explicit operator, writing the product (a b) therefore means (a GP b), where the 
parentheses are optional. 

 
 

Figure 3. Geometric product is anticommutative 
 

3.2. Geometric Product and Spinor Operator 
 
The following examples demonstrate the anticommutative geometric product. Assume that a 
system is defined or spanned by a set of orthonormal vectors: G2 = span{a, b}. Now multiply 
vector a times bivector (a b) and use the topological simplifications iii  a a = b b = +1. 
 

a (a b) = a a b = b                                                         (2) 
 
Similarly, multiply vector b times bivector (a b) and then repeatedly multiply result by (a b): 
 

b (a b) = b a b = –a b b = –a   
–a (a b) = –a a b = –b 

–b (a b) = –b a b = +a b b = a                                                 (3) 
 
                                                 
i Due to the outer product, and equivalent to the vector cross product only in three dimensions 
ii Geometric product of vectors is the sum a b=  + ∧a b a bi  of inner a bi  and outer ∧a b products. 
iii Simplification of (a a)=1 means a vector is self collinear and this represents the inner product a a = 1i  
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As graphically depicted in Figure 4, the repeated geometric product application of the bivector 
( )a b  spins any state counter-clockwise and explains why the bivector ( )a b  is referred to as a 
spinor. Multiplying by the bivector (–a b) spins the states in the clockwise direction, following 
the right-hand rule. The various qubit encodings are rotations of each other, so these states are 
rotationally invariant. You can now relax, since the spinor idea is the most difficult piece of 
physics and related mathematics in this article.  
 
The result of a vector multiplied twice by a bivector inverts that vector, which can be analyzed 
from only the operator perspective by squaring the operator and simplifying. 
  

(a b)2 = (a b)(a b) = a b a b = –a a b b  = –1                                        (4) 
 

 
Figure 4. Bivector (a b) spins the state space counter-clockwise  

 

Since (a b)2 = –1, therefore the spinor S = (a b) = 1− . Because the spinor operator squared is 
the inverter (or S2 = NOT operator) the spinor operator is referred to as the square root of not:    

S = ( )a b  = NOT . This is topologically easy to understand using Figure 4 and the 
anticommutative geometric producti. Notice that even though all examples up to now are integer 
coefficients for spinors, it is possible to encode arbitrary angles using the GA rotators. This is 
important to allow arbitrary phase qubits and probability amplitudes, but will not be discussed 
virtually at all in this introductory paper. Another alternative is to use Tom Etter’s link theory to 
count the multiple discrete ways of reaching the same output state.   
 
 

3.3. Reversibility, Unitary Operators, Phases and Pauli Operators  
 
The bivector spinor operator SA = (a0 a1) for a qubit A = (±a0±a1) is simply an even grade 
operator that switches between the odd grade classical and superposition phases ii and can be 
applied to any state. Also the inversion operator (SA)2 = –1 can be applied to any state. Both the 

                                                 
i Due to these spinor properties, qubits are referred to as possessing spin ½. 
ii A spinor is the same as the Hadamard operator. 
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inverter –1 0A∈  and the spinor SA 2A∈  are even grade operators, but they also have another 
important property, called reversibility. Classically speaking, a one-to-one mapping of states is 
often reversible but any many-to-one state mapping is irreversible. 
 
Just as the name suggests, reversibility refers to an operator that can be reversed or undone. 
Conventional classical computing, with traditional Boolean logic gates, is typically not reversible 
due to many-to-one state mappings (effectively, the arrival path is lost), which means 
information is erased and energy is consumed due to this erasure [7]. Classical computation is 
reversible by using only the 3-input and 3-output reversible Toffoli or Fredkin gates, rather than 
the conventional irreversible 2- input gates of NAND/NOR. 
 
Reversibility [8] is easy to describe mathematically with the understanding that all operators are 
implemented as products. Let’s assume a multivector system state X and a multivector operator Y 
forming some new multivector system state Z = X Y. To undo this operator means convert the 
state Z back into state X. This is possible by simply dividing by Y (or multiplying times 1/Y =Y –1) 
resulting in Z/Y = X Y/Y = X. The operator Y is reversible if and only if the multiplicative inverse 
W = 1/Y = Y –1 exists. An operator Y with this property (i.e. 1/Y exists) is called unitary because Y 
W = Y Y –1 = +1 and this formal definition is semantically synonymous with any reversible 
operator Y. 
 
The good news about reversibility is that scalars (1/a = a), vectors (1/a = a), n-vectors (1/SA = –
SA) and many multivectors (1/A0 = A1, 1/A– = A+) are reversible because geometric products are 
invertiblei [3]. The term invertible means (to physicists) that expressions have a multiplicative 
inverse. This term should not be confused with the similar sounding logical inverse, which is 
implemented in geometric algebra as the additive inverse (or negation).  
 
A useful multivector example PA = –1 + SA, is invertible (1/PA = 1 + SA) and has several other 
properties. First, PA is of even grade just like its additive operands. Second, (PA)2 = SA so 

consequently AS  = ±PA. It is now possible to summarize the previously seen discrete phase 

relationships: +1 = 360°, NOT = 1+ = 180°, spinor = NOT = 90°, so the square root of an 
operator (if it exists) is related to dividing the spin angle in half and similarly the third root angle 
is 360°/3 = 120°, etc.  Third, since the operator –1 means inversion and SA means phase spin, 
then with our interpretation of addition, PA is simultaneously an inversion and phase shift! Here 
are the results of the Pauli operator PA applied to the four qubit states.  
 

A0 PA = A0 (–1) + A0 SA = A1 + A+ = (–a0 + a1) + (a0 + a1) = –a0 + a0 + a1 + a1 = –a1 
A1 PA = A0 + A– = +a1 
A – PA = A+ + A0 = –a0 
A+ PA = A – + A1 = +a0                                                       (5) 

 

The Pauli operator PA reversibly maps the classical states A1/0 to the vertical vector ±a1 and 
maps the superposition states A± to the horizontal vector ±a0. As expected and as graphically 
                                                 
i Neither the inner nor outer products are invertible by themselves 
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seen in Figure 5, this represents a discrete 45 degree phase encoding away from the classical and 
superposition axes. The inversion and spinor operators still function as expected for this 
representation. This vector encodingi emphasizes the classical/superposition meaning of the 
vectors rather than the spin up/down meaning, yet both interpretations are valid. 

 
Figure 5. Phase Encodings of 180°, 90° and 45° for qubit A = (±a0±a1) 

 

All three Pauli operators have now been discussed ( 1
σ = –1, 3σ = SA, 2

σ = PA). This is important 
to quantum computing mathematics because the Pauli operators represent the reversib le even-
grade operators that encode how noise can affect a qubit state as either a bit inversion, a phase 
shift, or both a bit & phase shift simultaneously. Likewise, the odd-grade reversible operators 
±a0, ±a1 and (±a0±a1) also produce alternate encodings to the even grade plane ii formed by the 
axes ±1 and ±SA. Quantum computation primarily involves reversibly rotating a qubit encoding 
through a phase angle iii without erasing the bit of information stored in the qubit, so all single-
qubit operators are specific kinds of phase gates. 
 
Of the total of 3N–1 = 80 possible qubit multivectors (excludes state 0), 48 are reversible because 
they are invertibleiv. The remaining 32 multivectors do not have multiplicative inverses and are 
thus irreversible. The next section describes how to identify these irreversible operators. Of the 
80 possible multivector states, 40 multivectors are the additive inverses of the other 40, and all of 
these 40 unique states are discussed as sets in this article. 
 
3.4. Irreversibility, Singular Operators, Erasure and Measurement 
 

Irreversible operators are important in quantum mechanics because they erase the information 
encoded in a qubit. Losing information is bad, because the wrong answer will emerge when 
asking for an answer with a measurement question. This situation is problematic for qubits 
because noise is equivalent to an unwanted operator. If the system is in an “unexpected” state, 
then the basis-based question asked (see below) will ipso facto be ill- formed, resulting in a 
random binary answer from the measurement. Additionally, all measurement operators are 
irreversible and destroy the qubit state by setting the qubit to the questioned state. Extracting the 
                                                 
i “Encoding” means basis: classical=standard basis, superposition=dual basis, and circular basis= ±1±SA 
ii Identical to real (scalars) and imaginary axes (SA = i) as represented in complex numbers.  
iii Geometric algebra rotators a’= R Ra % : with 1 2 ,R α β= − e e  1 2 ,R α β= + e e%  cos( /2), sin( /2)α θ β θ= =  
iv Definition of unitary is |det(X)| = +1, which is true for all non-singular multivectors X if det(X)<>0 [9] 
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information stored in a qubit destroys the state, so there is only one chance. This is similar to old 
core memory systems, which required writing the data back after a destructive read. 
 
The simplest non- invertible multivector has the form X = (±1±x), where x is any 1-vector. 
Simply stated, because X –1 = (±1±x)–1 does not exist, then X is called singular i. This fact is the 
basis for all other singular operators of a qubit because using the product X Y = Z, if either factor 
X or Y is singular then so is Z ii. Alternatively, when X is unitary then X –1 exists and the 
multivector X is non-singular.  
 
All of the 32 singular multivectors of a qubit contain one of the factors (±1±x), and they are: 
(±1±a0) = 4, (±1±a1) = 4, a0(±1±a1) = 4, a1(±1±a0) = 4, (±1±a0)(±1±a1) = 8 and the opposite 
order (±1±a1)(±1±a0) = 8 for a total of 4 + 4 + 4 + 4 + 8 + 8 = 32 unique singular multivectors. 
As is shown below, all of these singular operators are related to measurement and information 
erasure. Each operator X in the list above was proved to be singular by exhaustively attempting 
to solve the equality X Y = 1, for each of the possible 80 multivectors Y, and no solutions were 
found. For expressions involving multiple qubits, other singular expressions exist, however, that 
do not have (±1±x) as a factor. 
 
Knowing exactly how measurement occurs, answers are extracted, and information is erased, in a 
qubit is important for quantum computing, and singular operators are an important clue to this 
understanding. Essentially, a measurement entails asking what state orientation a particular 
vector currently possesses.  In geometric algebra, a multivector of the form X = (–1)(1 ± x) can 
be used to isolate only the state cases for orientation ±x and so is equivalent to testing or 
decoding vector x for a particular orientation, denoted as X±. Each of the four output columns in 
Table 4 represents one of the singular expressions of the form (–1)(1 ± x). 
  
In every column, two rows contain the + state and two rows contain the 0 state. When this 
expression is used as an operator it effectively creates a notch filter that only passes the non-zero 
states. By combining two orientation choices using the geometric product, a particular row can 
be selected, which specifies the logically combined state A0± and A1±, so each row Rk represents 
a cell in a Boolean logic Karnaugh map iii used by conventional logic designers. 
 

Table 4. Specifying a particular vector orientation in G 2 = span{a0, a1}. 
 

Row k a0 a1 (–1)(1 – a0) (–1)(1 + a0) (–1)(1 – a1) (–1)(1 + a1) 
R0 – – + 0 + 0 
R1 – + + 0 0 + 
R2 + – 0 + + 0 
R3 + + 0 + 0 + 

Summation of Rk è A0– = R0 + R1 A0+ = R2 + R3 A1– = R0 + R2 A1+ = R1 + R3 
Denoted as Vector iv è [+ + 0 0] [0 0 + +] [+ 0 + 0] [0 + 0 +] 

 

                                                 
i X is singular if det(X) = 0 because X –1 becomes infinite due to X –1 being dependent on 1/det(X) 
ii For X Y = Z, then det(X)det(Y) = det(Z), so if det(X) = 0 or det(Y) = 0 then det(Z) = 0 
iii Rk = computational basis: different than standard since mult=XNOR vs. AND in Hilbert spaces 
iv The vector notation is set of Rk denoted as vector [R0 R1 R2 R3 …] and is used extensively here. 
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A0± A1± = (–1)(1 ± a0)(–1)(1 ± a1) = (1 ± a0)(1 ± a1) = (1 ±a0 ±a1 ±a0 a1), whence 
A0– A1– = (1 – a0 – a1 + a0 a1) 
A0– A1+ = (1 + a0 – a1 – a0 a1) 
A0+ A1– = (1 – a0 + a1 – a0 a1) 
A0+ A1+ = (1 + a0 + a1 + a0 a1)                                                (6) 

 

Table 5. Specifying two vector orientations in G 2 
 

Row k a0 a1 (1–a0)(1–a1) (1–a0)(1+a1) (1+a0)(1–a1) (1+a0)(1+a1) 
R0 – – + 0 0 0 
R1 – + 0 + 0 0 
R2 + – 0 0 + 0 
R3 + + 0 0 0 + 

State logic è R0 = A0– A1– R1 = A0– A1+ R2 = A0+ A1– R3 = A0+ A1+ 
Denoted as Vector è R0 = [+ 0 0 0] R1 = [0 + 0 0] R2 = [0 0 + 0] R3 = [0 0 0 +] 

 
Table 5 illustrates these singular expressions, which represent the topologically smallest features 
in a qubit representation. These row-decode operators, Rk are linearly independent and all other 
expressions can be derived by summing specific rows, so each algebraic expression has a unique, 
dual, sparse representation expressed as the sum of Rk. The inverse of Rk is denoted as Pk = –Rk. 
The compact vector- like notation [R0 R1 R2 R3] expresses these states, where the row values Rk ∈ 
{0, –, +} are the values of the expressions for every non-zero combination of vector orientations. 
This vector notation can be thought of as a matrix diagonal because R0+R1+R2+R3 = [+ + + +] = 
+1, and P0+P1+P2+P3 = [– – – –] = –1. The vector notations for several other familiar 
multivectors are: a0 = [– – + +], a1 = [– + – +],    SA = [+ – – +], A0 = [0 – + 0], A1 = [0 + – 0], 
A+ = [+ 0 0 –],  A– = [– 0 0 +] and PA = [0 + + 0]. Element by element vector addition is identical 
to algebraic addition, for example the sum:  a0 + a1 = [– – + +] + [– + – +] = [+ 0 0 –] = A+, 
because the Rk are linearly independent. 
 
The overall qubit singular-operator relationships are now shown in Table 6, which illustrates the 
answer to measuring the four qubit states (in first column) from the perspective of each singular 
row-decode operator Rk = A0± A1±. This table is an example of a set of one-to-one mappings that 
is irreversible because the mapping operators are singular and so cannot be undone. Classical 
Boolean logic systems do not have the concept of singular operators. 
 

Table 6. Qubit measurement results for G 2 
 

Each start state A times each Rk 
Start States A  

A(1+a0)(1–a1) A(1–a0)(1+a1) A(1+a0)(1+a1) A(1–a0)(1–a1) 
A0 = + a0 – a1 –1 + a1 = +I  +1 + a1 = −I  –a0 (+1 + a1) +a0 (–1 + a1) 
A1 = – a0 + a1 +1 – a1 = −I  –1 – a1 = +I   –a0 (–1 – a1) +a0 (+1 – a1) 
A– = – a0 – a1 –a0 (–1 + a1) +a0 (+1 + a1) +1 + a1 = −I  –1 + a1 = +I  
A+ = + a0 + a1 –a0 (+1 – a1) +a0 (–1 – a1) –1 – a1 = +I   +1 – a1 = −I   

End State è  A => + a0 – a1 A => – a0 + a1 A => + a0 + a1 A => – a0 – a1 
Description è  Classical States Measurement  Superposition States Measurement 
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Applying the singular operators Rk, Table 6 produces two kinds of singular answers, either a 
“sparse invariant” or a random value. The measurement returns the answer and the qubit changes 
to the end state after measurement. The resulting answers of the form (±1±a1) = ±I  act like a 
constant since the non-zero output row-states are either all + or all –, as follows. This was 

originally hinted at in Table 4, since –1 + a1 = [+ 0 + 0] = +I  and –1 – a1 = [0 + 0 +] = +I  are 
two out-of-phase examples of sparse invariants. This name was coined because the multivectors 

±I act like sparse versions of the constants ±1, with the properties 
− +=−I I  and ( )2± +=I I . 

The sum of two out-of-phase versions of these invariants form the constants o o
+ +

0 90
+1= +I I  = 

[+ + + +] and o o0 90
1 = +− −− I I  = [– – – –]. Any multivector of the form (±1±X) is a sparse 

invariant, where X is any n-vector. Not all sparse invariants are singular, e.g. PA=–1+SA=[0++0].  
 

From a measurement perspective, the sparse invariants ±I  represent a Boolean answer because 
the result is +I  or −I , and the qubit is projected to the end state matching the question. This 

process is irreversible because both Rk and ±I  are singular. From the sums of Rk or vector 
notation, it is easy to see how information is erased because the symmetryi of the qubit is broken. 
The symmetry is essentially based on which rows are valid, where the rows {R1, R2} are non-
zero only for the classical states and the rows {R0, R3} are non-zero only for the superposition 

statesii. The sparse invariants include a row state from each pair of rows o0

+I =[+ 0 + 0] = R0 + R2 

and o90
+I  = [0 + 0 +] = R1 + R3, so the combined asymmetrical state is no longer linearly 

independent since it is the sum of non-orthogonal elements iii. 
 
The row-pair symmetry is also broken by singular operators of the form (±a0 ± a0 a1) because 
a0 + a0 a1 = R1 – R3, –a0 – a0 a1 = R3 – R1, a0 – a0 a1 = R0 – R2, and –a0 + a0 a1 = R2 – R0. 
Each of these results looks like a random value because half the states are + and other half are –, 
or statistically random, in contrast to the invariants, which are all the same value. The row-
decode operators Rk = A0± A1± are also asymmetrical since they each contain only one non-zero 
row. 
 
The above discussion utilizes only half of the singular states of a qubit. Exactly the same analysis 
can be performed using the anticommutative or dual versions of the row-decode operator 
products R7-k = A1± A0± (dual of Rk = A0± A1±). These expressions represent the other four 
multivectors of the form (1 ± a0 ± a1 ± a0 a1), where the sign is inverted for the bivector, 
resulting in all zero-valued row-states being converted to the – state. 
 

A1+ A0+ = (1 + a0 + a1 – a0 a1) = [+ – – –] = R7 where R0 = [+ 0 0 0]  
A1– A0+ = (1 + a0 – a1 + a0 a1) = [– + – –] = R6 where R1 = [0 + 0 0]  
A1+ A0– = (1 – a0 + a1 + a0 a1) = [– – + –] = R5 where R2 = [0 0 + 0]  
A1– A0– = (1 – a0 – a1 – a0 a1) = [– – – +] = R4 where R3 = [0 0 0 +]                   (7) 

                                                 
i Symmetry or coherence, whereas asymmetry means decoherence 
ii Pair-wise orthogonal 1 2 0R R =i  are the standard basis and 0 3

0R R =i  are the dual basis. 
iii Non-orthogonal vectors cannot be used as the matrix basis vectors for quantum systems. 
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With the inverted operators P7-k = –R7-k also defined, then the following facts are true about R4-7: 
R4+R5+R6+R7 = +1 and P4+P5+P6+P7 = –1. The overall unitarityi property of a qubit is defined 
as P0+P1+P2+P3+P4+P5+P6+P7 = +1 and R0+R1+R2+R3+R4+R5+R6+R7 = –1. 
 
An important and interesting topological fact is that these set of eight multivectors have the 
invertiblity property X = 1/X = X –1, and therefore are self-unitary: X X –1 = X X = X 2 = 1. The 
multivectors in G2 with this propertyii have the  form of Ek = (±a0 ±a1 ±a0 a1) and represent the 
eight corners of the cube in Figure 6, formed by the axes {±a0, ±a1, ±a0 a1}. These multivectors 
form the corners of the dual tetrahedrons formed by the sides Pk = –(1+Ek) or Ek = Rk –1 shown 
in Figure 7. Even though the axes are drawn in a cube, they are not orthogonal. 

 
Figure 6. Eight multivectors Ek define two sets (E0-3 and E7-4) of four corners 

 
The results in Figures 6 and 7 are topologically interesting and very relevant to matrix 
mathematics. One of the important results of the relationships, Rk = (1 + Ek) and (Ek)2  = 1 is that 
the product [10] Ek Rk = Ek (1+Ek) = Ek+ (Ek)2 = Ek +1 = Rk, which ultimately leads to the 
important result iii that Pk Pk = (Pk)2 = Pk, where the  Pk form the sides of the dual tetrahedrons in 
Figure 7. Table 7 summarizes these multivector relationships including the sum of all Ek = 0. 

 
Figure 7. Sides of a tetrahedron are formed by P0-3 on left and P7-4 on right 

                                                 
i Same as the unitarity constraint for qubits in Hilbert Space 
ii Property Ek Ek = 1 means the Ek are the eigenvectors and Pk = –(1+Ek) are the projection operators 
iii Pk are idempotent (Pk)2 = Pk projection operators of a qubit. Pk are eigenvalues of the eigenvectors Ek 
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The symmetric results in Table 7 show that our algebraic notation naturally describes a qubit and 
is formally equivalent to the matrix notation traditionally used for the same purpose. Even 
though establishing the foundational concepts of qubits relies on some fairly abstruse 
mathematics, once these are in place, one need only the relatively straightforward manipulation 
of geometric algebra to read, write, manipulate, interpret, and understand qubits. Nevertheless, 
quantum concepts themselves still constitute a relatively steep learning curve.  
 

Table 7. Summary of Definitions and Relationships between Rk, Pk and Ek 
 

Primary Tetrahedron Dual Tetrahedron 
k = Ek = Rk–1 Pk = –Rk  Rk = 1+Ek k = Ek = Rk–1 Pk = –Rk  Rk = 1+Ek 
0 [0 – – –] [– 0 0 0] [+ 0 0 0] 7 [0 + + +] [– + + +] [+ – – –] 
1 [– 0 – –] [0 – 0 0] [0 + 0 0] 6 [+ 0 + +] [+ – + +] [– + – –] 
2 [– – 0 –] [0 0 – 0] [0 0 + 0] 5 [+ + 0 +] [+ + – +] [– – + –] 
3 [– – – 0] [0 0 0 –] [0 0 0 +] 4 [+ + + 0] [+ + + –] [– – – +] 

sum [0 0 0 0] [– – – –] [+ + + +] sum [0 0 0 0] [– – – –] [+ + + +] 
 

The last remaining set of expressions from the 80 qubit states i is called the trine states. Trines are 
mathematically easy to identify because they represent the eight solutions of the equality (Tr)3 = 
1. The qubit solutions all have the form Tr = (+1 ± a0 ± SA) or Tr = (+1 ± a1 ± SA) and their 
inverses. The general form is the concurrent sum of the spinor and a singular operator of the 
form (+1 ±x). As expected and as seen in state evolution in Eq. (8), this 120° operator causes the 
state space to become asymmetrical. These operators are unitary though, because the multivector 
Tr is invertible since 1/Tr = (Tr)2. 
 

A0 = [0 + – 0] 
A0 (+1 + a0 + SA)  = (+1 – a0 + SA) = [0 + – +] 
A0 (+1 + a0 + SA)2 = (–1 + a0 – SA) = [0 + – –] 

A0 (+1 + a0 + SA)3 = A0 = [0 + – 0]                                          (8) 
 

The next section describes combining multiple qubits to form a quantum register. 
 

4. Quantum Registers as Geometric Product of Qubits 
 

Multiple q qubits can be combined to form a quantum register Qq =Gn=2q that defines a space of 
size n = 2q. The state space of two qubitsii with n = 4 does not have the size of 4 + 4 = 8 states, 
but rather N = 24 = 16 = 4 * 4 total states and 316 = 43,046,721 discrete multivectors. The number 
of states grows exponentially because combining qubits entails entangling their state spaces. 
Geometric algebra easily expresses qubit entanglement using the geometric productiii. The 
entanglement of q = 2 qubits, defined as A = (±a0±a1) and B = (±b0±b1), is simply the 
geometric product A B of the qubits: 
 

A B = (±a0±a1)(±b0±b1) = ± a0 b0 ± a0 b1 ± a1 b0 ± a1 b1                     (9) 
                                                 
i For the full table of 40/80 operators see table 7.2 in reference [4]. 
ii Gn=3 is a qutrit where multivector state A = (±a0 ±a1 ±a2) and describes a spin-one particle: a photon. 
iii Geometric product is same as tensor product ⊗  in Hilbert spaces and tensor power nX ⊗  is simply nX  
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This sum of four bivectors represents all the possible simultaneous combinations of the spin 
vectors. Recalling the spinor notation for each qubit (i.e. SA, SB, etc), these bivectors are actually 
cross-qubit spinors and are denoted as S00 = a0 b0, S01 = a0 b1, S10 = a1 b0 and S11 = a1 b1, 
with all vectors in the standard sorted order. The product of sums format on the left is 
mathematically identical to the sum of products format on the right. If a sum of bivectors can be 
factored back into a product of sums format, the entangled states are called separable. 
 
Specific examples with each qubit in specific states produce a vector notation with 16 rows. The 
number of states grows as N = 22q = 4q, but the number of non-zero states only grows as 2q = 4. 
Notice that sum of products for A0 B1 is indistinguishable from A1 B0 so A0 B1 = A1 B0. 
 

A0 B0 = (a0–a1)(b0–b1) = +a0 b0 – a0 b1 – a1 b0 + a1 b1 

A0 B1 = (a0–a1)(b1–b0) = –a0 b0 + a0 b1 + a1 b0 – a1 b1 
A1 B0 = (a1–a0)(b0–b1) = –a0 b0 + a0 b1 + a1 b0 – a1 b1 

A+ B+ = (a0+a1)(b0+b1) = +a0 b0 + a0 b1 + a1 b0 + a1 b1                        (10) 
 
Using the multiplication principle 0 x = 0, then the valid or non-zero states of both qubits must 
be satisfied simultaneously. As shown in Table 8, if the 16 row vectors i are determined for the 
above examples, then the valid rows are: A0 B0 = –R5 +R6 +R9 –R10 and A+ B+ = R0 –R3 –R12 +R15 

based on the simultaneity constraint that both qubits are contributing non-zero states.  
 

Table 8. Valid rows for products A0 B0 and A+ B+ in Q2 
 

State Combinations Individual bivector products Column 
Vector Row k 

a0 a1 b0 b1 a0 b0 a0 b1 a1 b0 a1 b1 A+ B+ A0 B0 
R0 – – – – + + + + + 0 
R1 – – – + + – + – 0 0 
R2 – – + – – + – + 0 0 
R3 – – + + – – – – – 0 
R4 – + – – + + – – 0 0 
R5 – + – + + – – + 0 – 
R6 – + + – – + + – 0 + 
R7 – + + + – – + + 0 0 
R8 + – – – – – + + 0 0 
R9 + – – + – + + – 0 + 
R10 + – + – + – – + 0 – 
R11 + – + + + + – – 0 0 
R12 + + – – – – – – – 0 
R13 + + – + – + – + 0 0 
R14 + + + – + – + – 0 0 
R15 + + + + + + + + + 0 

                                                 
i For Qq the Pk = –Rk are singular, but are idempotent only if the definition is extended to: (Pk)n=2q = Pk 
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As expected, the valid states of the system are just the valid states for each qubit spread out 
across a larger space. The green highlighted rows {R5, R6, R9, R10} indicate the classical states A0 
and B0. The blue highlighted rows {R0, R3, R12, R15} indicate the superposed states A+ and B+. A 
very interesting intermediate result noted in the rose colored middle columns is an output state 
can only be zero if the sum of 2q bivector orientations exactly equals 0. This only occurs when 
all bivectors have exactly an equal number of both orientationsi. Consequently, all non-zero 
outputs can occur only when all the bivector orientation coefficients have exactly the same sign. 
This pair-wise cancellation result is therefore independent of the mod 3 addition conventions 
established initially. For more examples, discussion and proof see [4]. 

Separable qubits each can be individually manipulated using the appropriate operators, and the 
operators can be thought of as being sequentially applied, producing various intermediate states. 
Due to non-commutative products, remember that A0 B0 = –B0 A0 (except for even grade 
operators that are commutative, such as B SA = SA B). 

 

A0 B0 SA = A0 SA B0 = A+ B0 = + a0 b0 – a0 b1 + a1 b0 – a1 b1 
A0 B0 SB = A0 B+ = + a0 b0 + a0 b1 – a1 b0 – a1 b1 

A0 B0 SA SB = A0 SA B0 SB = A+ B+ = + a0 b0 + a0 b1 + a1 b0 + a1 b1             (11) 

 
Also understand that the Pauli operators applied to both qubits define the cross-qubit spinors.  
 

A0 B0 PA PB = A0 PA B0 PB = a1 b1 = S11 and likewise  
A+ B+ PA PB = a0 b0 = S00    
 A+ B1 PA PB = a0 b1 = S01 
A1 B+ PA PB = a1 b0 = S10                                                                          (12) 

 
This implies that the sum of spinor products is identical to representing the qubits in four distinct 
states simultaneously (i.e. superposed) in the Pauli encoding. In fact, this is exactly the previous 
meaning of a sum of cross-qubit spinors, since addition means concurrent. 
 

4.1. Ebits and Bell States 
 
A very interesting result regarding two qubits is applying both spinors concurrently (SA + SB) 
rather than sequentially (SA SB) to produce an ebit. Half of the bivectors disappear due to 
destructive interference. As a consequence, this result is inseparable and the reason is the erasure 
of phase-states. Just as a single qubit is a computational resource due to superposition of states, 
an ebit is also a computational resource because it encodes exactly one classical bit of 
information (one bit being erased), even if the qubits are separated by a large distance [11]. The 
ebit’s property is that of an Einstein-Podolsky-Rosen (EPR) communications resource. 
 

A0 B0 (SA + SB) = A+ B0 + A0 B+ = –a0 b0 + 0 a0 b1 + 0 a1 b0 + a1 b1 = –a0 b0 + a1 b1  (13) 
 

                                                 
i The number of spinors s=2q contains only even factors, so s/3 = ±1≠  0, so 0 occurs only when +1 –1= 0 
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This state is one of the four Bell states i B i. The concurrent spinor B  = (SA + SB), which turns 
out to be the Bell operator, iteratively generates all four Bell states (B0 =>B1 =>B2 =>B3 
=>B0) using the formula B i+1 = B i B. Table 8 shows the very interesting result that the only 
valid states are where exactly one qubit occupies the superposition state at a time. The unlisted 
rows are zero, so do not occur. This property is also holds true for valid row states for any 
number of qubits as: A0 B0 C0 … (SA + SB + SC + …). This symmetry is quite fascinating! 
 
The even numbered Bell states are complements of each other B0 = –B2 and the same is true for 
the odd numbered states B1 = –B3. This suggests something about the square of the Bell 
operator and as expected, a higher dimensional version of the sparse invariants surfaces. 
 

B B  = (B )2 = +1 – SASB = [0– –0 –00–  –00– 0– –0] = −I  
 (B )4 = –1 + SASB = [0++0 +00+ +00+ 0++0] = +I                          (14) 

 

Table 8. Valid rows for ebit B0 in Q 2 
 

State Combinations Individual bivectors  
Row k 

a0 a1 b0 b1 –a0 b0 a1 b1 
Output column 

R1 – – – + – – + 
R2 – – + – + + – 
R4 – + – – – – + 
R7 – + + + + + – 
R8 + – – – + + – 
R11 + – + + – – + 
R13 + + – + + + – 
R14 + + + – – – + 

 

An important question is, “Is the Bell operator singular?” The answer is yes, because (B )–1 does 
not exist [4], which means that once the Bell operator is applied, the combined states cannot be 
exited or escaped using a unitary operator. Applying the inverted operator –B evolves the states 
in the opposite direction B i–1 = B i (–B ). 
 
How the Bell operator erases information can easily be demonstrated once the magic operator 
and magic states are defined. The four magic statesii  (M0 =>M1 =>M2 =>M3 =>M0) are 
generated by the singular magic operator M  = (SA – SB) using the iteration M i+1 = M i M. 
The magic states produce 90° out-of-phase sparse invariants compared to the Bell versions. 
 

M M = (M )2 = +1 + SASB = [–00– 0– –0 0– –0 –00–] = −I  
(M )4 = –1 – SASB = [+00+ 0++0 0++0 +00+] = +I                             (15) 

 

                                                 
i B 0 = –S00 + S11 = +Φ , B 1 = S01 + S10 = +Ψ , B 2 = S00 – S11 = −Φ , B 3 = – S01 – S10 = −Ψ  
ii M0 = S01 – S10, M 1 = –S00 – S11, M2 = – S01 + S10, M 3 = S00 + S11 



 

 
 
 

 

19 

It is possible to switch reversibly between the Bell and the magic states because M3 = B2 
(S01+S10). An important relation for Bell and magic states is: B i M = M i B = 0, which follows 
from the complete destructive interference of these state and operator spinors. Armed with this 
knowledge, one can usefully express the original entanglement equations as the sum of Bell and 
magic states. 
 

A B = (±a0±a1)(±b0±b1) = ± a0 b0 ± a0 b1 ± a1 b0 ± a1 b1 = B j + M i          (16) 
 
Some particular examples are: 
 

A0 B0 = (a0–a1)(b0–b1) = + a0 b0 – a0 b1 – a1 b0 + a1 b1 = B3 + M3 
A+ B+ = (a0+a1)(b0+b1) = + a0 b0 + a0 b1 + a1 b0 + a1 b1 = B1 + M3              (17) 

 
Therefore, independent of the starting state, half of the states are always multiplicatively erased 
when applying either the Bell or magic operators because B i M = M i B = 0. These results 
show that information is erased and these operators are irreversible, since a many-to-one 
mapping occurs due to erasure, as illustrated with the examples A0 B0 M and A+ B+ M: 
 

A0 B0 B = B0 + 0 and A0 B0 M = 0 + M0 
A+ B+ B = B2 + 0 and A+ B+ M = 0 + M0                                      (18) 

 
A simple proof that B and M are singular can also be realized using the Cancellation Principle 
of Multiplication of multivectors which states: if X Y = X Z then Y = Z if and only if 1/X exists. 
The proof uses an example: if X = Y = B and Z = PA PB (–1), it can be shown that: 
 

B B = B PA PB (–1) = 1 – SASB is always True but 
Z = PA PB (–1) = –1 + SA+ SB – SASB = B – (1 + SASB)                          (19) 

 
The equality B = B – (1 + SASB) can be true only if (1 + SASB) = 0, which is always False even 
though the product B (1 + SASB) = 0 is always True. This contradiction therefore means B ≠  B 
– (1 + SASB) because 1/B does not existi and B is singular. Similarly, M is singular. ÿ  
 
The Bell and magic states can also be used as singular operators ii to orient the states, because: B i 
B i = −I , B i B i+2 = +I  while B i B i+1 = B i B i-1 = random states, and likewise for M i. See 
Figure 8 for a graphical summary of the states, where PAB = PA PB. It is easy to understand that 
for three (or more) qubits, there are (q-1)2 = 4 equivalent Bell operators of the form (SA ± SB ± 
SC) and the same number of out-of-phase sets of Bell states with exactly the same properties 
discussed here. This concludes the discussion of ebits and the Bell and magic states. The next 
topic is the new operators that are possible for two qubits. 
 

                                                 
i Exhaustively searched the 43 million cases for solutions X in Q 2 where (SA±SB)(X) = 1 and found none.  
ii All B i and M i are singular because they respectively contain B  and M  as factors. 
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Figure 8. Summary of Bell and Magic States 

 
4.2. Conditional Operators CNOT and CSPIN 
 
The only logic-like operator for one qubit is inversion due to phase spinning. The new operators 
possible for two qubits are the so-called conditional operators (similar to the familiar if-then-else 
clauses) because one qubit acts as a control qubit forming a conditional gating state for the 
operator action on the other data qubit. Three or more qubits are required before conventional 
logic operations can be performed using fully reversible logic gates such as the Toffoli and 
Fredkin gates. 
 
The conditional form of inversion is called the control-not operator (CNOT) and the conditional 
spinor is called the control-spini operator (CSPIN). Both the CNOT  and CSPIN operators are 
expressed as multivector operators that are applied using the geometric product. Conditional 
operators have the general behavior that if the state of a control qubit A is in state A1 then the 
operation is performed on data qubit B. Alternately if qubit A is in state A0 then the operation is 
not performed on qubit B. The CNOT operator performs a conditional inversion of the data qubit, 
while leaving the control qubit unchanged. 
 
Conditional operators are conceptually tricky with regard to quantum computing for the 
following reasons. First, it is easy to assume, based on classical computing ideas, that in order to 
“know” the state of the control qubit, it must be measured, which is problematic, if measurement 
erases information. Second, therefore the conditionality must occur by applying specific 
operators only to specific states. This is also problematic since the states are thoroughly mixed 
via entanglement, and it is hard to separate out just the ones you want. Third, geometric products 
of multivectors are unconditional since each n-vector element is jointly affected by every n-
vector in the operator. The results achieved so far for one qubit are due to the natural 
unconditional behavior of geometric products, spinors, and destructive interference.  
 
An example of a conditional operator for one qubit is the reverse ii operator, denoted as A% . As the 
name suggests, this operator simply reverses the order of the vectors in an n-vector A, but this is 
not related to the concept of reversibility. If the vectors are then placed back in the standard 

                                                 
i Control-spin is usually called a control-Hadamard gate in the literature. 
ii Reverse is identical to Hermitian adjoint †A = A%  used in matrices. If A=A%  then A is self-adjoint 
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vector order, then dependent on the overall grade of the particular n-vector, the coefficient will 
conditionally either remain the same or complement its orientation due to anticommutative 
operand swaps. The reverse of a multivector is the reverse of each graded element separately, 
where scalars and vectors are unaffected. Here are some examples. 
 

reverse(±1) = ±1 and  reverse(a) = a 
reverse(a b) = b a = –a b 

reverse(a b c) = c b a = –a b c 
reverse(a b c d) = d c b a = +a b c d 

reverse(a b c d e) = e d c b a = +a b c d e 
reverse(a b c d e f) = f e d c b a = –a b c d e f                                   (20) 

 
Through use of the reverse operator and the operator A0 = (a0 – a1), a single qubit A can be 
reversibly encoded into the even-grade plane to represent a complex number (A0 A0 = –1,      A1 
A0 = +1, A– A0 = –SA, A+ A0 = SA). The operator equivalent to the requisite complex conjugate 
can then be performed using the reverse operator to invert conditionally only the sign of the 
imaginary (or bivector) portion. This result is then converted back into the standard qubit states 
using the operator A1 = (–a0 +a1). This sequence of steps A’ = reverse(A A0) A1 conditionally 
inverts only the superposition states A± and topologically represents a reflection of the states off 
one of the axis, but cannot be realized by using only the unconditional geometric product. The 
main point of this discussion is that in general, writing conditional operators in a reversible linear 
representation is not straightforward and requires specialized state preparation and operators (e.g. 
conjugation) other than geometric products. In spite of this general restriction, it is possible to 
realize CNOT and CSPIN as multivector operators. 
 
The earlier point regarding knowing the state of the control qubit is the inspiration behind the 
CNOT operator. As shown above for the complex number representation of a qubit, it is possible 
to encode a qubit in the even-grade plane using the operator A0 = (a0 – a1). The classical states 
A0/1  are mapped to ±1 respectively (an invariant) and the superposed states A± are mapped to ±SA 
(a random value). So the result of using any state as its own operator is like making a reversible 
encoding without breaking the symmetry of the qubit. This insight is the key to understanding 
that the control-not operator for control qubit A is CNOTAB = A0.  Here are the results of 
entangling two qubits with the application of the CNOT operator. 
 

A0 B CNOTAB = (+1) B = +B => leave data qubit  
A1 B CNOTAB = (–1) B = –B => invert data qubit 

A– B CNOTAB = (+SA) B = SA(+B) => leave data qubit 
A+ B CNOTAB = (–SA) B = SA(–B) => invert data qubit                           (21) 

 
As expected, the CNOT operator maps the control qubit to the other encoding, but the right 
multiplication of the operator causes the sign to become inverted due to the non-commutative 
operation B A0 = –A0 B. The overall effect is to invert B depending on the state of A. It is useful 
to think that this reversible operator reassigns the information in qubit A to the sign of qubit B 
(remember A0 B1 = A1 B0). So qubit A now contains the state +1, which means A was classically 
encoded and +SA means A was encoded as a superposition. A control-not gate is intended to be 
defined only for classical control states, so the result containing the spinor SA is correct. The 
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same analysis derives the operator when the roles are swapped for the data and control qubits. 
Another way to think of this is that A1 and B define a simultaneous constraint. 
 
This result is not exactly the conventional definition of the control-not operator since the 
encoding of the control qubit is modified. This can be remedied if another qubit A’ is initialized 
to the same state A’= A, then the result is that the new qubit B includes a duplicate of the 
entangled information from A, and the qubit A is left intact and untouched. The duplicate must be 
created in parallel since copying or cloning a qubit requires a measurement. This restriction is 
called the no-cloning theorem of quantum information.  
 

A A’B CNOTA’B = A (∓ B) = ∓ A B                                       (22) 
 
Since (SA)2 = (spinor)2 = NOT the inspiration occurred to solve for (CSPIN)2 = CNOT, and the 
result is CSPIN = CNOT  = –1 + A0 (and its other root, and inverse of +1 + A1). This operator 
has the same concurrent structure as the Pauli spin operator, except with the concurrent operators 
being the inversion and reversible encoding. Since CSPIN = 4 1−  it indicates a 45 degree 
rotation. Interestingly, the Bell operators have this exact same structure where (B )2 = −I , and 

B  = (B )2 + B  = −I + B  and this structural similarity of equations is most likely a meaningful 
coincidence. The results of the CSPIN operator in Eq. (23) and Table 9 are interesting because 
they show the need for a mixed-grade multivector to encode the phase information.   
 

A0 B0 CSPINAB = B0 – A0 B0 = (b0 – b1) – a0 b0 + a0 b1 + a1 b0 – a1 b1 
A– B0 CSPINAB = SA B0 + A+ B0 = a0 a1 (b0 – b1) + a0 b0 – a0 b1 + a1 b0 – a1 b1      (23) 

 
For classical states of the control qubit A, Table 9 shows that the overall multivector orientation 
inverts depending on the control qubit state. The superposition states are also encoded, yet of the 
16 possible rows only 6 rows are valid at once. The valid rows indicate what the valid states are 
and represent a simultaneous constraint system where the operators conditionally change the 
overall row states that are non-zero. This is clearly evident by the conditional validity of row-
states R5, R6, R9 and R10 in Table 9. 
 

Table 9. Valid rows for A B CSPINAB 
 

Combinations A B CSPINAB = –A B + B0/1                                            Rowk 
a0 a1 b0 b1 

Active 
States A0B(A0–1) A1B(A0–1) A0B(A0+1) A1B(A0+1) 

R1 – – – + A– &B1 + – + – 
R2 – – + – A– &B0 – + – + 
R5 – + – + A1 &B1 0 0 –  + 
R6 – + + – A1 &B0 0 0 +  

= b0 
– 

= b1 

R9 + – – + A0 &B1 – + 0 0 
R10 + – + – A0 &B0 + 

= b0 
– 

= b1 
0 0 

R13 + + – + A+&B1 + – + – 
R14 + + + – A+&B0 – + – + 

 
This concludes the new operators for Q2. 
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5. Toffoli Operator is Concurrent CNOT 
 

The same process for the control-not gate can be expanded to Q3 in order to include two control 
qubits A, B and a data qubit D. The resulting control-control-not gate is called the Toffoli 
operator and only inverts qubit D when the control qubits are both active (denoted by the 
subscript 1) in states A1 and B1. The individual cases of single control-nots are first expressed to 
correctly account for the anticommutative operand swaps. The control qubits are indicated by the 
small subscript c, since it is not always the first one listed in an expression. 
 

A Bc D CNOTBD = A Bc D (B0) = A Bc B1 D = ± A D   (one operand swap)  
Ac B D CNOTAD = Ac B D (A1) = Ac A1 B D = ± B D   (two operand swaps) 

 
Now the Toffoli Operator is TOFABD  = CNOTAD + CNOTBD = A1+B0 = (–a0 + a1 + b0 – b1) and 
is reversible because (TOF)2 = +1. This simple grade-1 multivector operator and grade-2 
multivector outcome is a direct result of applying the concurrency interpretation of addition as 
discovered for the Bell operator. Here is the general Toffoli gate formula: 
 

Ac Bc D (TOFABD) = Ac Bc D (A1 + B0) = ± B D  ± A D                              (24) 
 
An particular case of Eq. (24) is now required in order to compute the valid rows in Table 10: 
 

A0 B0 D0 (TOFABD) = + a0 d0 – a0 d1 – a1 d0 + a1 d1 + b0 d0 – b0 d1 – b1 d0 + b1 d1 
= [00000+–0 0–+00000 0+–00–+0 00000+–0 0–+00000 0+–00–+0 00000+–0 0–+00000]  (25) 

 
Table 10. Valid row states for A0 B0 D0 (TOFABD) in Q 3 

 

State Combinations Rowk 
a0 a1 b0 b1 d0 d1 

Active States A0 B0 D0 
(TOFABD) 

R21 – + – + – + A1 B1 & D1 – 
R22 – + – + + – A1 B1 & D0 + 

Inverted 

R41 + – + – – + A0 B0 & D1 + 
R42 + – + – + – A0 B0 & D0 – 

Identity 

8 rows Aclassical Bsuperpose Dclassical Ac Bs & Dc ± 
8 rows Asuperpose Bclassical Dclassical As Bc & Dc ± 

Mixed 
states 

44 rows All conditions not listed above none 0 Invalid  
 
Rows 21-22 in Table 10 represent the valid states where both control lines are active high and 
the output orientation is inverted compared to qubit D. Rows 41-42 represent the valid states 
when no inversion occurs, so the output orientation matches qubit D. Since the Toffoli gate 
TOFABD = (–a0 + a1 + b0 – b1), it is clear why three qubits in Q3 are necessary to express this 
operator. There are four variants of this operator,  A0+B0, A1+B0, A1+B0, and A1+B1, depending on 
the desired Boolean condition. 
 
Notice that no other row states are valid when both controls have classical states! This is 
important because, due to the overall symmetry in geometric algebra, designing arbitrary 
multiplicative operators is difficult, so in essence operators are discovered, not designed. This 
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problem is akin to building a ship in a bottle, where the quantum state is analogous to a very 
high-dimensional bottle and only tools (or operators) that fit through the neck of the bottle 
(combinations of single qubit operators) are allowed. It is possible to design an arbitrary state 
because the row states are linearly independent (given any vector notation can uniquely convert 
to the algebraic notation and vice versa). Some states can only be created via addition rather than 
with a multiplicative operator starting from a valid entangled qubit state. 
 
6. Conclusions 
 

The wealth of quantum computing concepts described here, using only addition and geometric 
products, is possible because geometric algebra naturally and implicitly captures the topological 
informational distinctions and constraints needed to represent qubits, ebits and familiar 
operators. This is the interpretation of the co-occurrence of two vectors appears to dominate. Due 
to the power of geometric algebra to represent classical mechanics, gravitational contraction and 
quantum mechanics, it is called “a unified language for physics and engineering” [5]. This work 
extends that domain to include quantum information and quantum computation with 
straightforward, well-developed [4] and – most importantly – easily interpreted mathematics. 
This work presents a qubit algebra and as well demonstrates a linearly independent, dual, vector 
notation that is useful because it combines the topologically smallest elements in the algebra. 
 
It is interesting to see how unfamiliar but transparently meaningful algebraic rules emerge 
directly from the choice of symmetric binary values +1 and –1 and the mapping of co-occurrence 
and co-exclusion to addition and the geometric product, i.e. a b = –b a and a a = 1. This 
symmetry then impacts the symmetry of the addition and multiplication operators, i.e. 1/a = a, 2a 
= a + a = –a = a/2 and enables sparse invariants. This symmetry is reinforced because qubits are 
the sum of two vectors, which results in many counts being a power of 2. As a result, the additive 
and multiplicative inverses become interchangeable as A0= –A1= 1/A1, but also sequential and 
concurrency ideas herewith intersect, e.g. Rk Rk = Rk + Rk = Pk. One should remember that the 
mathematics describing quantum mechanics is algebraically closed, and so is equivalent to 
bouncing a light beam around inside a hollow mirrored sphere. 
 
Quantum computing works because it relies on the intrinsically high-dimensional infrastructure 
of the quantum universe. John Wheele r’s paper “It from Bit” [13] stipulates that everything 
classical, including energy, matter, spacetime and even empty space, emerges from this bit soup 
(also called quantum ether or quantum foam) because the universe started as a “bit bang” [6,12]. 
Our geometric algebra approach algebraically and consistently describes topological quantum 
information forms as a massless high-dimensional topology and true concurrency without 
focusing on how it is projected into any of the classical properties of space, time or energy. This 
approach is consistent with extant quantum gravity theories treating the information mechanics 
of black holes (or bit buckets) [14].  
 
It is possible to make better decisions, to be smarter, with high-dimensional spaces [15] because 
more states can participate simultaneously in a decision, due to a higher locality metric and true 
concurrency. Quantum metrics and phenomena are not possible in computation restricted to 
classical spacetime. Spacetime itself limits the computational density by segregating [16] the 
required information locality and concurrency. This alone should motivate engineers and 
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programmers to want to understand quantum computing: because it allows computers to cheat by 
computing outside the limiting spacetime box that occurs when representing bits classically. 
Because of the unusual and counterintuitive nature of quantum information, encouraging 
engineers and programmers to ascend the quantum computing learning curve will lead to an 
appreciation of the fundamental role of information in the quantum computing universe and 
might lead to general purpose quantum computers. 
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