Quantum Geometric Algebra

ANPA Conference Cambridge, UK

by Dr. Douglas J. Matzke
matzke@ieee.org
Aug 15-18, 2002

Abstract

Quantum computing concepts are described using geometric algebra, without using complex numbers or matrices. This novel approach enables the expression of the principle ideas of quantum computation without requiring an advanced degree in mathematics.

Using a topologically derived algebraic notation that relies only on addition and the anticommutative geometric product, this talk describes the following quantum computing concepts:
bits, vectors, states, orthogonality, qubits, classical states, superposition. states, spinor, reversibility, unitary operator, singular, entanglement, ebits, separability, information erasure, destructive interference and measurement.

These quantum concepts can be described simply in geometric algebra, thereby facilitating the understanding of quantum computing concepts by non-physicists and non-mathematicians.

ANPA 2002: Quantum Geometric Algebra

Overview of Presentation

- Co-Occurrence and Co-Exclusion
- Geometric Algebra G_{n} Essentials
- Symmetric values, scalar addition and multiplication
- Graded N-vectors, scalar, bivectors, spinors
- Inner product, outer product, and anticommutative geometric product
- Qubit Definition is Co-Occurrence
- Standard and Superposition States, Hadamard Operator, Not Operator
- Reversibility, Unitary Operators, Pauli Operators, Circular basis
- Irreversibility, Singular Operators, Sparse Invariants and Measurement
- Eigenvectors, Projection Operators, trine states
- Quantum Registers
- Geometric product equivalent to tensor product, entanglement, separability
- Ebits and Bell/magic States/operators, non-separable and information erasure
- C-not, C-spin, Toffoli Operators
- Conclusions

ANPA 2002: Quantum Geometric Algebra

Co-Occurrence and Co-Exclusion

$$
\begin{gathered}
\mathbf{a}=+\mathbf{a}=\mathbf{O N} \text { and } \\
\overline{\mathbf{a}}=-\mathbf{a}=\operatorname{not} \mathbf{O N} \\
\text { where } \mathbf{a}+\overline{\mathbf{a}}=0
\end{gathered}
$$

$$
\mathrm{a}+\overline{\mathrm{b}}=\overline{\mathrm{b}}+\overline{\mathrm{a}}
$$

Co-occurrence means states exist exactly simultaneously

Co-exclusion means a change occurred due to an operator

Abstract Time

Both of Mike Manthey's concepts used heavily in this research

Boolean Logic using + /* in G_{n}

+	0	1	-1
0	0	1	-1
1	1	-1	0
-1	-1	0	1

$*$	0	1	-1
0	0	0	0
1	0	1	-1
-1	0	-1	1

Normal multiplication and mod 3 addition for ring $\{-1,0,1\}$, so can simplify to $\{-, 0,+\}$ and remove rows/columns for header value 0 .

+ NAND + => - same XNOR same $=>+$
- NOR - => + differ XNOR differ $=>-$

$*$	+	-
+	+	-
-	-	+
If same then +1 If diff then -1		

If same then +1
If diff then -1

Also for any vector e: since $\mathbf{e}^{2}=1$ then $\mathbf{e}=1 / \mathbf{e}$

Logic inG	$=\operatorname{span}\{\mathbf{a}, \mathbf{b}\}$	GA Mapping $\{+,-\}$
GA Mapping $\{+, 0\}$		
Identity \mathbf{a}	$\mathbf{a} * 1=\mathbf{a}+0=\mathbf{a}$	$-1-\mathbf{a}=-(1+\mathbf{a})$
NOT a	$\mathbf{a}^{*}-1=-\mathbf{a}$	$-1+\mathbf{a}=-(1-\mathbf{a})$
\mathbf{a} XOR b	$-\mathbf{a} \mathbf{b}$	$-1+\mathbf{a} \mathbf{b}$
\mathbf{a} OR b	$\mathbf{a}+\mathbf{b}-\mathbf{a} \mathbf{b}$	$-1-\mathbf{a}-\mathbf{b}+\mathbf{a} \mathbf{b}$
\mathbf{a} AND b	$+1-\mathbf{a}-\mathbf{b}-\mathbf{a} \mathbf{b}$	$+1+\mathbf{a}+\mathbf{b}+\mathbf{a} \mathbf{b}$

Geometric Algebra is Boolean Complete

ANPA 2002: Quantum Geometric Algebra

Geometric Algebra Essentials

$\mathbf{a} \mathbf{b}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \wedge \mathbf{b}$ where geometric product is sum
$\mathbf{a} \cdot \mathbf{b}=\cos \theta$
$\mathbf{a} \wedge \mathbf{b}=i \sin \theta$
of inner product (is a scalar)
and outer product (is a bivector)
$\mathrm{G}_{\mathrm{n}=2}$ generates $\mathrm{N}=2^{\mathrm{n}}: \operatorname{span}\{\mathbf{a}, \mathbf{b}\}$
$\underline{G}_{2}=$ scalars $\{ \pm 1\}$, vectors $\{\mathbf{a}, \mathbf{b}\}$, and bivector $\{\mathbf{a} \mathbf{b}\}$ then: With $\mathbf{a} \cdot \mathbf{b}=0 \quad$ (only orthonormal basis so are perpendicular) then $\mathbf{a} \mathbf{b}=-\mathbf{b} \mathbf{a} \quad$ (due to anti-commutative outer product) $\mathbf{a}^{2}=\mathbf{b}^{2}=1 \quad$ (due to inner product since collinear) bivector is spinor because: (right multiplication by spinor) $\mathbf{a}(\mathbf{a} \mathbf{b})=\mathbf{a} \mathbf{a} \mathbf{b}=\mathbf{b}$, and $\mathbf{b}(\mathbf{a} \mathbf{b})=-\mathbf{a} \mathbf{b} \mathbf{b}=-\mathbf{a}$
spinor is also pseudoscalar I because:
$(\mathbf{a b})^{2}=\mathbf{a b} \mathbf{a} \mathbf{b}=-\mathbf{a} \mathbf{a b} \mathbf{b}=-(\mathbf{a})^{2}(\mathbf{b})^{2}=-1=\mathrm{NOT}$
so $\mathbf{a} \mathbf{b}=\sqrt{-1}=\sqrt{N O T}$

also $\mathbf{x}^{\prime}=R \mathbf{x} \tilde{R}$ with $R=\alpha-\beta \mathbf{a} \mathbf{b}, \tilde{R}=\alpha+\beta \mathbf{a} \mathbf{b}, \alpha=\cos (\theta / 2), \beta=\sin (\theta / 2)$

ANPA 2002: Quantum Geometric Algebra

Number of Elements in G_{n}

Graded: scalar, vector, bivector, trivector, ..., n-vector for G_{n} with $N=2^{n}$ elements
$(1+\mathbf{a})(1+\mathbf{b})(1+\mathbf{c})=1+\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{a} \mathbf{b}+\mathbf{a} \mathbf{c}+\mathbf{b} \mathbf{c}+\mathbf{a} \mathbf{b} \mathbf{c}<$ multivector
$\mathrm{G}_{\mathrm{n}}=\mathrm{G}_{\mathrm{n}}^{+}+\mathrm{G}_{\mathrm{n}}^{-}=\langle A\rangle_{0}+\langle A\rangle_{1}+\langle A\rangle_{2}+\langle A\rangle_{3}+\ldots+\langle A\rangle_{n}$
$\begin{array}{cc}\text { Odd grade terms } \mathrm{G}_{\mathrm{n}}{ }^{-}= & \text {Row }=n \\ \langle A\rangle_{1}+\langle A\rangle_{3}+ & \text { Col }=m\end{array} \quad 1+\sum_{m=1}^{n}\binom{n}{m}=N=2^{n}$

$$
\langle A\rangle_{1}+\langle A\rangle_{3}+\ldots
$$

Even Subalgebra $\mathrm{G}_{\mathrm{n}}{ }^{+}=$ $\langle A\rangle_{0}+\langle A\rangle_{2}+\ldots$
$\mathrm{G}_{3}{ }^{+}$are the quaternions: $1+\mathbf{a} \mathbf{b}+\mathbf{a} \mathbf{c}+\mathbf{b} \mathbf{c}$

0
1
2

3
4
$\begin{array}{lllllllll}\mathbf{5} & & 1 & 5 & 10 & 10 & 5 & 1 & \\ \mathbf{6} & & 1 & 6 & 15 & 20 & 15 & 6 & 1\end{array}$ Pascal's Triangle

$$
=1
$$

$$
=2
$$

$$
=4
$$

$$
=8
$$

$$
=16
$$

$$
=32
$$

$$
=64
$$

(Binomial)

ANPA 2002: Quantum Geometric Algebra

Inner Product Calculation

$\mathbf{Y}=(\mathbf{x} \wedge \mathbf{y})$ and $\mathbf{Z}=(\mathbf{Y} \wedge \mathbf{z})$ with vector variables $\mathbf{w}, \mathbf{x}=\mathbf{a}, \mathbf{y}=\mathbf{b}, \mathbf{z}=\mathbf{c}$
$\mathrm{G}_{2}=\operatorname{span}\{\mathbf{a}, \mathbf{b}\}: \quad \mathbf{w} \cdot \mathbf{Y}=\mathbf{w} \cdot(\mathbf{a} \wedge \mathbf{b})=(\mathbf{w} \cdot \mathbf{a}) \wedge \mathbf{b}-(\mathbf{w} \cdot \mathbf{b}) \wedge \mathbf{a}$
$\mathrm{G}_{3}=\operatorname{span}\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}: \mathbf{w} \cdot \mathbf{Z}=(\mathbf{w} \cdot \mathbf{a}) \wedge \mathbf{b} \wedge \mathbf{c}-(\mathbf{w} \cdot \mathbf{b}) \wedge \mathbf{a} \wedge \mathbf{c}+(\mathbf{w} \cdot \mathbf{c}) \wedge \mathbf{a} \wedge \mathbf{b}$
Only one non-zero term in sum for orthogonal basis set $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$

Outer Product

$X \wedge Y$	Y				
	+1	\mathbf{a}	\mathbf{b}	$\mathbf{a b}$	
X	+1	+1	\mathbf{a}	\mathbf{b}	$\mathbf{a b}$
	\mathbf{a}	\mathbf{a}	0	$\mathbf{a b}$	0
	\mathbf{b}	\mathbf{b}	$-\mathbf{a b}$	0	0
	$\mathbf{a b}$	$\mathbf{a b}$	0	0	0

$X \bullet Y$	Y				
	+1	\mathbf{a}	\mathbf{b}	$\mathbf{a b}$	
X	+1	0	0	0	0
	\mathbf{a}	0	+1	0	\mathbf{b}
	\mathbf{b}	0	0	+1	$-\mathbf{a}$
	$\mathbf{a b}$	0	\mathbf{b}	$-\mathbf{a}$	-1

$X Y=X \cdot Y+X \wedge Y$ only if X or Y are assigned vector \mathbf{x} or \mathbf{y}

ANPA 2002: Quantum Geometric Algebra

Qubit is Co-occurrence in G_{2}

Single Qubit: $A=(\pm \mathbf{a} 0 \pm \mathrm{a} 1)$

where $\mathrm{Q}_{1}=\mathrm{G}_{2}=\operatorname{span}\{\mathbf{a 0}, \mathbf{a} \mathbf{1}\}$
4 elements \& $3^{4}=81$ multivectors

Row ${ }_{\mathrm{k}}$	a0	a1	$A_{1}=\overline{\mathbf{a 0}}+\mathbf{a 1}$	$A_{0}=\mathbf{a} 0+\overline{\mathbf{a} 1}$	$A_{+}=\mathbf{a} 0+\mathbf{a} 1$	$A_{-}=\mathbf{a} 0+\mathbf{a} 1$
R_{0}	-	-	0	0	+	-
R_{1}	-	+	+	-	0	0
R_{2}	+	-	-	+	0	0
R_{3}	+	$+$	0	0	-	+
Binary combinations of input states			Anti-symmetric sums are classical states		Symmetric sums are superposition states	
			$A_{1}=R_{1}-R_{2}$	$A_{0}=R_{2}-R_{1}$	$A_{+}=R_{0}-R_{3}$	$A_{-}=R_{3}-R_{0}$

ANPA 2002: Quantum Geometric Algebra

Spinor is Hadamard Operator

Start Phase	Qubit State A	Each Times Spinor	Result $=A \mathbf{S}_{\text {A }}$	End Phase
Classical	$A_{0}=+\mathbf{a} 0-\mathbf{a 1}$	$\begin{aligned} & +\mathrm{a} 0(\mathrm{a} 0 \mathrm{a} 1)=+\mathrm{a} 1 \\ & -\mathrm{a} 0(\mathrm{a} 0 \mathrm{a} 1)=-\mathrm{a} 1 \end{aligned}$	$A_{+}=+\mathbf{a} 0+\mathbf{a} 1$	Superposed
	$A_{1}=\mathbf{- a 0}+\mathbf{a 1}$		$A_{-}=-\mathbf{a} 0-\mathbf{a 1}$	
Superposed	$A_{+}=+\mathbf{a} \mathbf{0}+\mathbf{a} 1$	$\begin{aligned} & +\mathrm{a} 1(\mathrm{a} 0 \mathrm{a} 1)=-\mathrm{a} 0 \\ & -\mathrm{a} 1(\mathrm{a} 0 \mathrm{a} 1)=+\mathrm{a} 0 \end{aligned}$	$A_{1}=-\mathbf{a} 0+\mathbf{a} \mathbf{1}$	Classical
	$A_{-}=-\mathbf{a} 0-\mathrm{a} 1$		$A_{0}=+\mathbf{a} 0-\mathbf{a 1}$	

Hadamard is the 90° phase or spinor operator $\mathbf{S}_{\mathrm{A}}=(\mathbf{a} \mathbf{0} \mathbf{a 1})$
NOT operator is 180° gate $\mathbf{S}_{\mathrm{A}^{2}}{ }^{2}=(\mathbf{a} \mathbf{a} \mathbf{a})(\mathbf{a} 0 \mathrm{a} 1)=-\mathbf{a} \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{a} 1=-1$
Therefore $\mathbf{S}_{A}=\sqrt{-1}=\sqrt{N O T}$ and generally $\sqrt[r]{\theta}=\theta / r$ and $\theta^{p}=p \theta$

ANPA 2002: Quantum Geometric Algebra

Unitary Pauli Noise States in G

Flip:	Case	Hilbert notation	Use case	GA equivalent is $(-1)=$ complement
Bit	$[\mathrm{a}]$	$\sigma_{1}\|0\rangle \rightarrow\|1\rangle$	$[\mathrm{a}]$	$(+\mathbf{a 0}-\mathbf{a} \mathbf{1})(-1) \rightarrow(-\mathbf{a 0}+\mathbf{a} \mathbf{1})$
$\sigma_{1}=\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right]$	$[\mathrm{b}]$	$\sigma_{1}\|1\rangle \rightarrow\|0\rangle$	$[\mathrm{b}]$	$(-\mathbf{a 0}+\mathbf{a} \mathbf{1})(-1) \rightarrow(+\mathbf{a 0}-\mathbf{a} \mathbf{1})$

Phase $=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$	Case	Hilbert notation	Use cases	GA equivalent is spinor $\mathbf{S}_{A}=\mathbf{a 0} \mathbf{a} 1$
	[a]	$\sigma_{3}\|1\rangle \rightarrow-\|1\rangle$	[a]\& [b]	$(-\mathrm{a} 0+\mathrm{a} 1)(-\mathrm{a0} \mathrm{a} 1) \rightarrow(+\mathrm{a} 0-\mathrm{a} 1)$
	[b]	$\sigma_{3}\|0\rangle \rightarrow\|0\rangle$		
	[c]	$-\sigma_{3}\|1\rangle \rightarrow\|1\rangle$	[b]\&[c]	$(+\mathrm{a} 0-\mathrm{al})(\mathrm{a0} a 1) \rightarrow(+\mathrm{a0}+\mathrm{a} 1)$

Both	Case	Hilbert notation	Use cases	GA equivalent is $\left(-1+\mathbf{S}_{A}\right)=P_{A}$
	[a]	$\sigma_{2}\|0\rangle \rightarrow+i\|0\rangle$	[a]\& [b]	$(+\mathbf{a 0}-\mathrm{a} 1)(-1+\mathrm{a} 0 \mathrm{a} 1) \rightarrow-\mathrm{a} 1$
$\sigma_{2}=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$	[b]	$\sigma_{2}\|1\rangle \rightarrow-i\|1\rangle$		

Pauli operators -1, \mathbf{S}_{A} and P_{A} are even grade!

ANPA 2002: Quantum Geometric Algebra

Reversible Basis Encodings:				
Standard, Dual, Pauli and Circular basis				
Label for Row	Start State	Diag ($-1+\mathbf{a 0} \mathbf{a 1}$)	Diag (a0)	$\operatorname{Diag}(+\mathbf{a 0}-\mathbf{a 1})$
classical 0 classical 1	+ a0-a1	- $\mathbf{1} 1$	(+1+a0 a1)	-1
	$-\mathbf{a 0}+\mathbf{a} 1$	+ $\mathbf{1}$	$(-1-\mathbf{a 0} \mathbf{a 1})$	+1
superposition + superposition -	$+\mathrm{a} 0+\mathrm{a} 1$	+ a0	(+1-a0 a1)	+ a0 a1 (random)
	$-\mathrm{a0}-\mathrm{a} 1$	- $\mathbf{a 0}$	$(-1+\mathbf{a 0} \mathbf{a 1})$	- a0 a1 (random)
Label for Basis	Diagonals	Pauli $=$ Ver/Hor	Circular	Direct or Complex
Reversible op. return to start		V/Hor (1+a0 a1)	Cir (a0)	Dir (-a0+a1)

Reversible Basis Encodings: Standard, Dual, Pauli and Circular basis

Unitary Operators and Reversibility

For multivector state X and multivector operator Y,

$$
\text { If new state } Z=X Y \text { then }
$$

Y is unitary if-and-only-if $W=1 / Y=Y^{-1}$ exists

$$
\text { such that } Y W=Y Y^{-1}=1
$$

Therefore unitary operator Y is invertible/reversible:

$$
Z / Y=X Y / Y=X
$$

For unitary Y then requires $\operatorname{det}(Y)= \pm 1$ or $|\operatorname{det}(Y)|=1$

$$
\begin{array}{|l|l|}
\hline A_{0} A_{1}=1 & \text { Trines are unitary: }(\operatorname{Tr})^{3}=1 \text { so } 1 / \operatorname{Tr}=(\operatorname{Tr})^{2} \\
A_{-} A_{+}=1 & \text { for } \operatorname{Tr}=\left(+1 \pm \mathbf{a} \mathbf{0} \pm \mathbf{S}_{\mathrm{A}}\right) \text { or }\left(+1 \pm \mathbf{a} \mathbf{1} \pm \mathbf{S}_{\mathrm{A}}\right) \\
\hline
\end{array}
$$

ANPA 2002: Quantum Geometric Algebra

Singular Operators in G_{n}

If $1 / X$ is undefined then requires $\operatorname{det}(X)=0$,
Since $(\pm 1 \pm \mathbf{x})^{-1}$ is undefined then $\operatorname{det}(\pm 1 \pm \mathbf{x})=0$ and therefore $\mathrm{X}=(\pm 1 \pm \mathbf{x})$ is singular

Singular examples: $\operatorname{det}(\pm 1 \pm \mathbf{a})=\operatorname{det}(\pm 1 \pm \mathbf{b})=0$
Also fact that: $\operatorname{det}(X) \operatorname{det}(Y)=\operatorname{det}(X Y)$,
which means if factor X has $\operatorname{det}(X)=0$,
then product $(X Y)$ also has $\operatorname{det}(X Y)=0$.

$$
X^{-1}=\left(X^{*}\right)^{T}
$$

$\approx \frac{1}{\operatorname{det}(X)}$

In $G_{2}: \operatorname{det}(1 \pm \mathbf{a}) \operatorname{det}(1 \pm \mathbf{b})=\operatorname{det}(1 \pm \mathbf{a} \pm \mathbf{b} \pm \mathbf{a} \mathbf{b})=0$

ANPA 2002: Quantum Geometric Algebra

Row Decode Operators R_{k} are Singular

Row $_{\text {k }}$	a0	a1	$(-1)(1-\mathbf{a 0})$	$(-1)(1+\mathbf{a 0})$	$(-1)(1-\mathbf{a} 1)$	$(-1)(1+\mathbf{a} \mathbf{1})$	\longleftarrow Standard
R_{0}	-	-	+	0	+	0	Algebraic Notation
R_{1}	-	+	+	0	0	+	
R_{2}	+	-	0	+	+	0	
R_{3}	+	+	0	+	0	+	
Summation of $R_{\mathrm{k}} \rightarrow$			$A O_{-}=R_{0}+R_{1}$	$A 0_{+}=R_{2}+R_{3}$	$A l_{-}=R_{0}+R_{2}$	$A l_{+}=R_{1}+R_{3}$	Dual \longleftarrow Vector Notation:
Denoted as Vector \rightarrow			[++00]	[00 + +]	[$+0+0$]	[$0+0+]$	
$\mathrm{Row}_{\mathrm{k}}$	a0	a1	$(1-\mathbf{a} 0)(1-\mathbf{a} 1)$	$(1-\mathbf{a} 0)(1+\mathbf{1} 1)$	$(1+\mathbf{a} 0)(1-\mathbf{a} 1)$	$(1+\mathbf{a} 0)(1+\mathbf{a} 1)$	
R_{0}	-	-	+	0	0	0	matrix diagonal
R_{1}	-	+	0	+	0	0	
R_{2}	+	-	0	0	+	0	
R_{3}	+	+	0	0	0	+	$\begin{aligned} & R_{2}+R_{3}= \\ & {[++++]=1} \end{aligned}$
State logic \rightarrow			$R_{0}=A O_{-} A l_{-}$	$R_{1}=A O_{-} A l_{+}$	$R_{2}=A O_{+} A l_{-}$	$R_{3}=A O_{+} A l_{+}$	
Denoted as Vector \rightarrow			$R_{0}=\left[\begin{array}{lll}+ & 0 & 0\end{array}\right]$	$R_{1}=[0+00]$	$R_{2}=[00+0]$	$R_{3}=\left[\begin{array}{llll}0 & 0 & +\end{array}\right]$	

R_{k} are topologically smallest elements in G_{2} and are linearly independent \quad 8/15/2002 DJM

ANPA 2002: Quantum Geometric Algebra

Measurement and Sparse Invariants

Start States A	Each start state A times each R_{k} gives the answer			
	$A(1+\mathbf{a} \mathbf{0})(1-\mathbf{a} 1)$	$A(1-\mathbf{a 0})(1+\mathbf{a} 1)$	$A(1+\mathbf{a} \mathbf{0})(1+\mathbf{a} \mathbf{1})$	$A(1-\mathbf{a} 0)(1-\mathbf{a} 1)$
$A_{0}=+\mathbf{a 0}-\mathbf{a} 1$	$-1+\mathrm{a} 1=1^{+}$	$+1+\mathrm{al}=1^{-}$	-a0 ($+1+\mathrm{a} 1)$	+a0 ($-1+\mathbf{a 1}$)
$A_{1}=-\mathbf{a 0}+\mathbf{a} 1$	$+1-\mathrm{a} 1=1^{-}$	$-1-\mathrm{al}=1^{+}$	- $\mathbf{a 0}(-1-\mathbf{a 1})$	+a0 ($+1-\mathrm{a} 1)$
$A_{-}=-\mathbf{a 0}-\mathbf{a} 1$	-a0 ($-1+\mathbf{a 1}$)	+a0 ($+1+\mathrm{a}$)	$+1+\mathrm{al}=1^{-}$	$-1+\mathrm{a} 1=1^{+}$
$A_{+}=+\mathbf{a} 0+\mathbf{a} 1$	-a0 ($+1-\mathrm{a} 1)$	+a0($-1-\mathbf{a 1}$)	$-1-\mathrm{al}=1^{+}$	$+1-\mathrm{a} 1={ }^{-}$
End State \rightarrow	$A^{\prime}=>+\mathbf{a 0}-\mathbf{a 1}$	$A^{\prime}=>-\mathbf{a 0}+\mathbf{a 1}$	$A^{\prime}=>+\mathbf{a 0}+\mathbf{a 1}$	$A^{\prime}=>-\mathrm{a0}-\mathrm{a} 1$
Description \rightarrow	Classical States Measurement		Superposition States Measurement	

$$
\begin{aligned}
& 1^{+}++1 \quad 1^{-\sim-1} \quad 1^{-=-1+} \quad\left(1^{*}\right)^{2}=1^{+} \\
& -1+\mathrm{a} 1=[+0+0]=1^{+0}+1-\mathrm{a} 1=[-0-0]=\mathrm{I}^{-0} \\
& -1-\mathrm{a} 1=[0+0+]=1^{+90}+1+\mathrm{a} 1=[0-0-]=\left.\right|^{-90}
\end{aligned}
$$

ANPA 2002: Quantum Geometric Algebra

Projection Operators P_{k} and Eigenvectors E_{k}

Primary Tetrahedron (k=0-3)				Dual Tetrahedron (=7-k)			
k =	$E_{\mathrm{k}}=R_{\mathrm{k}}-1$	$P_{\mathrm{k}}=-R_{\mathrm{k}}$	$R_{\mathrm{k}}=1+E_{\mathrm{k}}$	$\mathrm{k}=$	$E_{\mathrm{k}}=R_{\mathrm{k}}-1$	$P_{\mathrm{k}}=-R_{\mathrm{k}}$	$R_{\mathrm{k}}=1+E_{\mathrm{k}}$
0	[0---]	$\left[\begin{array}{lllll}-0 & 0 & 0\end{array}\right]$	[+0000]	7	$[0+++]$	$[-+++]$	[+---]
1	[-0--]	[0-00]	[$0+000$	6	$[+0++]$	[+-++]	[-+--]
2	[--0-]	[00-0]	[00+0]	5	$[++0+]$	[++-+]	[--+-]
3	[---0]	[000-]	$[000+]$	4	$[+++0]$	[+++-]	[---+]
sum	$\left[\begin{array}{llll}0 & 0 & 0\end{array}\right]$	[----]	[++++]	sum	$\left[\begin{array}{llll}0 & 0 & 0\end{array}\right]$	[----]	[++++]

$R_{\mathrm{k}}=-P_{\mathrm{k}}$
$E_{\mathrm{k}}^{2}=1$
$E_{\mathrm{k}} R_{\mathrm{k}}=R_{\mathrm{k}}$
$P_{\mathrm{k}}^{2}=P_{\mathrm{k}}$
Idempotent!!

$$
E_{\mathrm{k}}= \pm \mathrm{a} 0 \pm \mathrm{a} 1 \pm \mathrm{a} 0 \mathrm{a} 1
$$

$$
P_{0} \cdot P_{3}=P_{1} \cdot P_{2}=P_{7} \cdot P_{4}=P_{6} \bullet P_{5}=0
$$

ANPA 2002: Quantum Geometric Algebra

Qubits form Quantum Register Q_{q}

$$
\begin{aligned}
& \text { with } A=(\pm \mathbf{a} \mathbf{0} \pm \mathbf{a} \mathbf{1}), B=(\pm \mathbf{b} \mathbf{0} \pm \mathbf{b} 1), C=(\pm \mathbf{c} \mathbf{0} \pm \mathbf{c} \mathbf{1}) \\
& \text { then } A B C=(\pm \mathbf{a} \mathbf{0} \pm \mathbf{a} \mathbf{1})(\pm \mathbf{b} \mathbf{0} \pm \mathbf{b} \mathbf{1})(\pm \mathbf{c} \mathbf{0} \pm \mathbf{c} \mathbf{1})
\end{aligned}
$$

$A_{+} B_{+}=(+\mathbf{a} 0+\mathbf{a} 1)(+\mathbf{b 0}+\mathbf{b} 1)=\mathbf{a} \mathbf{0} \mathbf{b 0}+\mathbf{a} 0 \mathbf{b 1}+\mathbf{a} 1 \mathbf{b 0}+\mathbf{a} 1 \mathbf{b} 1$

Geometric product replaces the tensor product \otimes

$\mathbf{R o w}_{\mathrm{k}}$	State Combinations			Individual bivector products				Column Vector		
	$\mathbf{a 0}$	$\mathbf{a 1}$	$\mathbf{b 0}$	$\mathbf{b 1}$	$\mathbf{a 0} \mathbf{b 0}$	$\mathbf{a 0} \mathbf{b 1}$	$\mathbf{a 1} \mathbf{b 0}$	$\mathbf{a 1} \mathbf{b 1}$	$A_{+} B_{+}$	$A_{0} B_{0}$
R_{0}	-	-	-	-	+	+	+	+	+	0
R_{3}	-	-	+	+	-	-	-	-	-	0
R_{5}	-	+	-	+	+	-	-	+	0	-
R_{6}	-	+	+	-	-	+	+	-	0	+
R_{9}	+	-	-	+	-	+	+	-	0	+
R_{10}	+	-	+	-	+	-	-	+	0	-
R_{12}	+	+	-	-	-	-	-	-	-	0
R_{15}	+	+	+	+	+	+	+	+	+	0

$\mathrm{Q}_{\mathrm{q}}=\mathrm{G}_{\mathrm{n}=2 \mathrm{q}}$
State Count:
Total: $2^{2 q}=4^{q}$
Non-zero: $2^{\text {q }}$
Zeros: $4^{q}-2^{q}$
$A B C=0$
$A_{1} B_{1} P_{\mathrm{A}} P_{\mathrm{B}}=$ a1 $\mathbf{b 1}=\mathbf{S}_{11}$

8/15/2002 DJM

ANPA 2002: Quantum Geometric Algebra

Ebits: Bell/magic States and Operators

Sepa	bl				$A_{0}(\mathbf{S}$	$\left(S_{B}\right)$	B_{+}
Non-Separ					$=A_{+} B_{0}$	${ }_{0} B_{+} C$	urrent!
				0	a0 b1	1 b 0	
					b1 =	$\mathbf{S}_{11}=$	
		Co	ina		Individ	vectors	Output
$\mathrm{Row}_{\mathrm{k}}$	a0	a1	b0	b1	-a0 b0	a1 b1	column
R_{1}	-	-	-	+	-	-	+
R_{2}	-	-	+	-	+	+	-
R_{4}	-	+	-	-	-	-	+
R_{7}	-	+	+	+	+	+	-
R_{8}	+	-	-	-	+	+	-
R_{11}	+	-	+	+	-	-	+
R_{13}	+	+	-	+	+	+	-
R_{14}	+	+	+	-	-	-	+

Valid states where exactly one qubit in superposition phase!!

$$
\begin{aligned}
& \mathrm{B}=\left(\mathbf{S}_{\mathrm{A}}+\mathbf{S}_{\mathrm{B}}\right) \\
& \mathrm{B}_{\mathrm{i} \pm 1}= \pm \mathrm{B}_{\mathrm{i}} \mathrm{~B} \\
& \mathrm{~B}_{0}=-\mathbf{S}_{00}+\mathbf{S}_{11}=\Phi^{+} \\
& \mathrm{B}_{1}=+\mathbf{S}_{01}+\mathbf{S}_{10}=\Psi^{+} \\
& \mathrm{B}_{2}=+\mathbf{S}_{00}-\mathbf{S}_{11}=\Phi^{-} \\
& \mathrm{B}_{3}=-\mathbf{S}_{01}-\mathbf{S}_{10}=\Psi^{-} \\
& \mathrm{M}=\left(\mathbf{S}_{\mathrm{A}}-\mathbf{S}_{\mathrm{B}}\right) \\
& \mathrm{M}_{\mathrm{i} \pm 1}= \pm \mathrm{M}_{\mathrm{i}} \mathrm{M} \\
& \mathrm{M}_{0}=+\mathbf{S}_{01}-\mathbf{S}_{10} \\
& \mathrm{M}_{1}=-\mathbf{S}_{00}-\mathbf{S}_{11} \\
& \mathrm{M}_{2}=-\mathbf{S}_{01}+\mathbf{S}_{10} \\
& M_{3}=+\mathbf{S}_{00}+\mathbf{S}_{11} \\
& \mathrm{M}_{3}=\mathrm{B}_{2}\left(\mathbf{S}_{01}+\mathbf{S}_{10}\right)
\end{aligned}
$$

$B \& M$ are Singular!

ANPA 2002: Quantum Geometric Algebra

Interesting Facts about Ebits

 $B^{2}=I^{-}$and $M^{2}=I^{-}$and $\sqrt{B}=B+I^{-}$
$-\mathrm{P}_{A} \mathrm{P}_{B}=\mathrm{B}-\left(1+\mathrm{S}_{A} \mathbf{S}_{B}\right)=\mathrm{B}+\mathrm{I}^{+}$
$A B=\mathrm{B}_{i}+\mathrm{M}_{j}$ but
$\mathrm{B}_{i} \mathrm{M}=\mathrm{M}_{i} \mathrm{~B}=0$,
so $A B \mathrm{~B}=\mathrm{B}_{i+1}+0$

B and M are valid for $\mathrm{Q}_{q>2}$ as $\left(\mathbf{S}_{\mathrm{A}} \pm \mathbf{S}_{\mathrm{B}} \pm \mathbf{S}_{\mathrm{C}} \pm \ldots\right)$

ANPA 2002: Quantum Geometric Algebra

Cnot, Cspin and Toffoli Operators

For Q_{2} with qubits A and B, where A is the control:
$\mathrm{CNot}_{\mathrm{AB}}=A_{0}=(\mathbf{a} \mathbf{0}-\mathbf{a 1})$ where $\left(A_{0}\right)^{2}=-1$
$\mathrm{Cspin}_{\mathrm{AB}}=\sqrt{\mathrm{CNot}}=\left(-1+A_{0}\right)=(-1+\mathbf{a 0}-\mathbf{a} \mathbf{1})$

Also for Q
q
$P_{\mathrm{k}}{ }^{2 \mathrm{q}}=$
$=P_{\mathrm{k}}$

$E_{\mathrm{k}} \mathrm{x}=1$	
q	x
1	2
2	6
3	80
4	$? ? ?$

8/15/2002 DJM

Conclusions

- The Quantum Geometric Algebra approach appears to simply and elegantly define many of the properties of quantum computing.
- This work was facilitated tremendously by the use of custom tools that automatically maintained the GA anticommutative and topological rules in an algebraic fashion.
- Many thanks to Mike Manthey for all his inspiration and support on my PhD effort.
- Many questions and much work still remains.

