

Quantum Geometric Algebra

ANPA Conference Cambridge, UK

by Dr. Douglas J. Matzke matzke@ieee.org Aug 15-18, 2002

Abstract

Quantum computing concepts are described using geometric algebra, without using complex numbers or matrices. This novel approach enables the expression of the principle ideas of quantum computation without requiring an advanced degree in mathematics.

Using a topologically derived algebraic notation that relies only on addition and the anticommutative geometric product, this talk describes the following quantum computing concepts:

bits, vectors, states, orthogonality, qubits, classical states, superposition states, spinor, reversibility, unitary operator, singular, entanglement, ebits, separability, information erasure, destructive interference and measurement.

These quantum concepts can be described simply in geometric algebra, thereby facilitating the understanding of quantum computing concepts by non-physicists and non-mathematicians.

Overview of Presentation

- Co-Occurrence and Co-Exclusion
- Geometric Algebra G_n Essentials
 - Symmetric values, scalar addition and multiplication
 - Graded N-vectors, scalar, bivectors, spinors
 - Inner product, outer product, and anticommutative geometric product
- Qubit Definition is Co-Occurrence
 - Standard and Superposition States, Hadamard Operator, Not Operator
 - Reversibility, Unitary Operators, Pauli Operators, Circular basis
 - Irreversibility, Singular Operators, Sparse Invariants and Measurement
 - Eigenvectors, Projection Operators, trine states
- Quantum Registers
 - Geometric product equivalent to tensor product, entanglement, separability
 - Ebits and Bell/magic States/operators, non-separable and information erasure
 - C-not, C-spin, Toffoli Operators
- Conclusions

Boolean Logic using +/* in G_n

Normal multiplication and mod 3 addition for ring $\{-1,0,1\}$, so can simplify to $\{-,0,+\}$ and remove rows/columns for header value 0.

+ NAND + => -- NOR - => +

same XNOR same => +
differ XNOR differ => -

Also for any vector **e**: since $e^2=1$ then e = 1/e

Logic in $G_2 = \text{span}\{a, b\}$	GA Mapping {+, -}	GA Mapping {+, 0}
Identity a	$\mathbf{a} * 1 = \mathbf{a} + 0 = \mathbf{a}$	$-1 - \mathbf{a} = -(1 + \mathbf{a})$
NOT a	a * -1 = -a	-1 + a = -(1 - a)
a XOR b	– a b	$-1 + \mathbf{a} \mathbf{b}$
a OR b	$\mathbf{a} + \mathbf{b} - \mathbf{a} \mathbf{b}$	$-1 - \mathbf{a} - \mathbf{b} + \mathbf{a} \mathbf{b}$
a AND b	+1 - a - b - a b	$+1 + \mathbf{a} + \mathbf{b} + \mathbf{a} \mathbf{b}$

Geometric Algebra is Boolean Complete

a $\mathbf{b} = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \wedge \mathbf{b}$ where geometric product is sum $\mathbf{a} \cdot \mathbf{b} = \cos q$ of inner product (is a scalar) $\mathbf{a} \wedge \mathbf{b} = i \sin q$ and outer product (is a *bivector*)

 $G_{n=2}$ generates N=2ⁿ: span{a, b}

Inner Product Calculation

 $\mathbf{Y} = (\mathbf{x} \land \mathbf{y})$ and $\mathbf{Z} = (\mathbf{Y} \land \mathbf{z})$ with vector variables \mathbf{w} , $\mathbf{x}=\mathbf{a}$, $\mathbf{y}=\mathbf{b}$, $\mathbf{z}=\mathbf{c}$

$$G_2 = \operatorname{span}\{a, b\}: \quad \mathbf{w} \cdot \mathbf{Y} = \mathbf{w} \cdot (a \wedge b) = \underline{(\mathbf{w} \cdot a) \wedge b} - \underline{(\mathbf{w} \cdot b) \wedge a}$$
$$G_3 = \operatorname{span}\{a, b, c\}: \quad \mathbf{w} \cdot \mathbf{Z} = \underline{(\mathbf{w} \cdot a) \wedge b \wedge c} - \underline{(\mathbf{w} \cdot b) \wedge a \wedge c} + \underline{(\mathbf{w} \cdot c) \wedge a \wedge b}$$

Only one non-zero term in sum for *orthogonal* basis set {**a**,**b**,**c**}

Outer Product

Inner Product

				Y			X•V			Y				
		+1	a	b	a b		Λ	Λ·Ι		a	b	a b		
X	+1	+1	a	b	a b			+1	0	0	0	0		
	a	a	0	a b	0		Y	a	0	+1	0	b		
	b	b	−a b	0	0		Λ	21	b	0	0	+1	-a	
	a b	a b	0	0	0			a b	0	b	-a	-1		

 $XY = X \cdot Y + X \wedge Y$ only if X or Y are assigned vector **x** or **y**

Spinor is Hadamard Operator

Start Phase	Qubit State A	Each Times Spinor	Result = $A \mathbf{S}_{A}$	End Phase
Classical	$A_0 = +a0 - a1$	+a0 (a0 a1) = +a1	$A_{+} = +a0 + a1$	Superposed
Classical	$A_1 = -a0 + a1$	-a0(a0 a1) = -a1	$A_{-} = -a0 - a1$	Superposed
Superposed	$A_{+} = +a0 + a1$	+a1 (a0 a1) = -a0	$A_1 = -a0 + a1$	Classical
Superposed	$A_{-} = -a0 - a1$	-a1(a0 a1) = +a0	$A_0 = +a0 - a1$	

Hadamard is the 90° phase or spinor operator $\mathbf{S}_A = (\mathbf{a0} \ \mathbf{a1})$ NOT operator is 180° gate $\mathbf{S}_A^2 = (\mathbf{a0} \ \mathbf{a1})(\mathbf{a0} \ \mathbf{a1}) = -\mathbf{a0} \ \mathbf{a0} \ \mathbf{a1} \ \mathbf{a1} = -1$ Therefore $\mathbf{S}_A = \sqrt{-1} = \sqrt{NOT}$ and generally $\sqrt[r]{q} = q / r$ and $q^p = pq$

Unitary Pauli Noise States in G_2

Reversible Basis Encodings:

Unitary Operators and Reversibility

For multivector state X and multivector operator Y,

If new state Z = X Y then

Y is *unitary* if-and-only-if $W = 1/Y = Y^{-1}$ exists

such that $Y W = Y Y^{-1} = 1$

Therefore unitary operator *Y* is *invertible/reversible*:

Z / Y = X Y / Y = X

For *unitary Y* then *requires* $det(Y) = \pm 1$ or |det(Y)| = 1

$$\begin{array}{c|c} A_{0} A_{1} = 1 \\ A_{-} A_{+} = 1 \end{array} \quad \text{Trines are unitary: } (Tr)^{3} = 1 \text{ so } 1/Tr = (Tr)^{2} \\ \text{for } Tr = (+1 \pm \mathbf{a0} \pm \mathbf{S}_{A}) \text{ or } (+1 \pm \mathbf{a1} \pm \mathbf{S}_{A}) \end{array}$$

Singular Operators in G_n If 1/X is *undefined* then requires det(X) = 0, Since $(\pm 1 \pm \mathbf{x})^{-1}$ is undefined then det $(\pm 1 \pm \mathbf{x}) = 0$ and therefore X = $(\pm 1 \pm \mathbf{x})$ is *singular*

Singular examples: $det(\pm 1 \pm \mathbf{a}) = det(\pm 1 \pm \mathbf{b}) = 0$

Also fact that: det(X)det(Y) = det(XY),

which means if factor X has det(X) = 0,

then product (*XY*) also has det(XY) = 0.

In G_2 : det $(1\pm a)$ det $(1\pm b) = det(1\pm a\pm b\pm ab) = 0$

 R_k are topologically smallest elements in G_2 and are linearly independent

Measurement and Sparse Invariants

Start States A	Each start state A times each R_k gives the answer								
Start States A	A(1+ a0)(1- a1)	A(1- a0)(1+ a1)	A(1+ a0)(1+ a1)	A(1- a0)(1- a1)					
$A_0 = +\mathbf{a0} - \mathbf{a1}$	$-1 + a1 = I^{+}$	$+1 + a1 = I^{-1}$	-a0(+1+a1)	+a0(-1+a1)					
$A_1 = -\mathbf{a0} + \mathbf{a1}$	$+1 - a1 = \mathbf{I}^{-1} - 1 - a1 = \mathbf{I}$		−a0 (−1 − a1)	+ a0 (+1 – a1)					
$A_{-}=-\mathbf{a0}-\mathbf{a1}$	-a0(-1+a1)	+ a0 (+1 + a1)	$+1 + a1 = I^{-}$	$-1 + a1 = I^{+}$					
$A_{+} = +$ a0 + a1	−a0 (+1 − a1)	+ a0 (-1 - a1)	$-1 - a1 = I^{+}$	$+1 - a1 = I^{-1}$					
End State →	A' => + a0 - a1	A' => -a0 + a1	<i>A</i> ' => + a0 + a1	$A' => -\mathbf{a0} - \mathbf{a1}$					
Description \rightarrow	Classical States	s Measurement	Superposition States Measurement						
$\boldsymbol{I}^+ \sim +1$ $\boldsymbol{I}^- \sim -1$ $\boldsymbol{I}^- = -\boldsymbol{I}^+$ $(\boldsymbol{I}^\pm)^2 = \boldsymbol{I}^+$									
$-1 + a1 = [+0 + 0] = \mathbf{I}^{+0} + 1 - a1 = [-0 - 0] = \mathbf{I}^{-0}$									
-1 - a1 =	= [0 + 0 +] =	I +90 +	1 + a1 = [0 - a]	$[-0-] = I^{-90}$					

Projection Operators P_k and Eigenvectors E_k

Qubits form Quantum Register
$$Q_q$$

with
$$A = (\pm a0 \pm a1), B = (\pm b0 \pm b1), C = (\pm c0 \pm c1)$$

then $A B C = (\pm a0 \pm a1)(\pm b0 \pm b1)(\pm c0 \pm c1)$ so

 $A_{+}B_{+} = (+a0 + a1)(+b0 + b1) = a0 b0 + a0 b1 + a1 b0 + a1 b1$

 $Q_q = G_{n=2q}$

Geometric product replaces the tensor product \otimes

Row _k	Stat	e Con	nbinat	ions	Indiv	vidual biv	Column Vector			
	a0	a1	b0	b1	a0 b0	a0 b1	a1 b0	a1 b1	$A_{+}B_{+}$	$A_0 B_0$
R_0		—	—	—	+	+	+	+	+	0
R_3		—	+	+	l	I	_	l		0
R_5	—	+	—	+	+	_	_	+	0	—
R_6	_	+	+	_	_	+	+	_	0	+
R_9	+	_	_	+	_	+	+	_	0	+
R_{10}	+	_	+	_	+	_	_	+	0	—
<i>R</i> ₁₂	+	+	_	_	-	-	—	-	—	0
R_{15}	+	+	+	+	+	+	+	+	+	0

State Count: Total: $2^{2q} = 4^{q}$ **Non-zero:** 2^{q} **Zeros:** $4^{q} - 2^{q}$

A B C = 0

$$A_1 B_1 P_A P_B =$$

a1 b1 = S₁₁

Ebits: Bell/magic States and Operators

Separable: $A_0 B_0(\mathbf{S}_A)(\mathbf{S}_B) = A_0(\mathbf{S}_A) B_0(\mathbf{S}_B) = A_+ B_+$ Non-Separable: $A_0B_0(\mathbf{S}_A + \mathbf{S}_B) = A_+B_0 + A_0B_+$ Concurrent! = -a0 b0 + 0 a0 b1 + 0 a1 b0 + a1 b1 $= -a0 b0 + a1 b1 = S_{00} + S_{11} = B_0$ **State Combinations** Individual bivectors Output **Row**_k column **a**0 **b0 -a0 b0** a1 b1 a1 **b1** D

Λ ₁	_	_		+		_	+
R_2			+		+	+	_
R_4		+	_	—	_	_	+
R_7		+	+	+	+	+	_
R_8	+	_	—	—	+	+	_
<i>R</i> ₁₁	+		+	+	_	_	+
<i>R</i> ₁₃	+	+		+	+	+	_
R_{14}	+	+	+	_	_	_	+

$$B = (S_A + S_B)$$

$$B_{i\pm 1} = \pm B_i B$$

$$B_0 = -S_{00} + S_{11} = \Phi^+$$

$$B_1 = +S_{01} + S_{10} = \Psi^+$$

$$B_2 = +S_{00} - S_{11} = \Phi^-$$

$$B_3 = -S_{01} - S_{10} = \Psi^-$$

$$M = (S_A - S_B)$$

$$M_{i\pm 1} = \pm M_i M$$

$$M_0 = +S_{01} - S_{10}$$

$$M_1 = -S_{00} - S_{11}$$

$$M_2 = -S_{01} + S_{10}$$

$$M_3 = +S_{00} + S_{11}$$

$$M_3 = B_2 (S_{01} + S_{10})$$

Valid states where exactly *one* qubit in superposition phase!!

B & **M** are Singular!

Ι

Cnot, Cspin and Toffoli Operators

For Q_2 with qubits *A* and *B*, where *A* is the control: $CNot_{AB} = A_0 = (\mathbf{a0} - \mathbf{a1})$ where $(A_0)^2 = -1$ $Cspin_{AB} = \sqrt{CNot} = (-1 + A_0) = (-1 + \mathbf{a0} - \mathbf{a1})$ For Q_3 : qubits *A*, *B* & *D* where *A* & *B* are controls: $Tof_{AB} = CNot_{AD} + CNot_{BD} = A_1 + B_0$ (*concurrent*!)

= -a0 + a1 + b0 - b1 where $(Tof_{AB})^2 = 1$

Row _k		Stat	e Con	nbinat	ions		Active	$A_0 B_0 D_0 (TOF_{AB})$			
	aO	a1	b0	b1	d0	d1	States				
	<i>R</i> ₂₁	-	+	—	+	—	+	$A_1 B_1 \& D_1$	—	Incontrol	
	<i>R</i> ₂₂	-	+	_	+	+	_	$A_1 B_1 \& D_0$	+	mverted	
	<i>R</i> ₄₁	+	_	+	_	_	+	$A_0 B_0 \& D_1$	+	Identity	
	<i>R</i> ₄₂	+	_	+	_	+	_	$A_0 B_0 \& D_0$	-	Identity	

Conclusions

- The Quantum Geometric Algebra approach appears to simply and elegantly define many of the properties of quantum computing.
- This work was facilitated tremendously by the use of custom tools that automatically maintained the GA anticommutative and topological rules in an algebraic fashion.
- Many thanks to Mike Manthey for all his inspiration and support on my PhD effort.
- Many questions and much work still remains.