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operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits 

(ebits) are expressed symmetrically as geometric algebra expressions.  Many known quantum 

computing gates, measurement operators, and especially the Bell/magic operators are also 

expressed as geometric products. These results demonstrate that geometric algebra can 

naturally and faithfully represent the central concepts, objects, and operators necessary for 

quantum computing, and can facilitate the design and construction of quantum computing 

tools.



 vii 

 

 

 

TABLE OF CONTENTS 

 
ACKNOWLEDEMENTS  ........................................................................................................v 

ABSTRACT..............................................................................................................................vi 

LIST OF TABLES .....................................................................................................................x 

LIST OF FIGURES ............................................................................................................... xiii 

CHAPTER 1 INTRODUCTION TO QUANTUM COMPUTING ......................................... 1 

1.1 Problem Definition ......................................................................................................... 1 
1.1.1 Why Quantum Computing is Important ................................................................. 2 
1.1.2 Understanding Quantum Computing is Difficult .................................................... 3 
1.1.3 Expanding the Quantum Computing Industry ........................................................ 4 

1.2 Intended Audience ......................................................................................................... 4 
1.3 Improving Understanding and Building Tools .............................................................. 5 
1.4 Summary of Results ....................................................................................................... 6 

 
CHAPTER 2 THE UNIVERSE IS A QUANTUM COMPUTER .......................................... 7 

2.1 Information is Primitive and Physical ............................................................................ 7 
2.2 High Dimensional Spaces .............................................................................................. 9 

2.2.1 High Dimensional Metrics versus Intuition .......................................................... 11 
2.2.2 Space and Time are Linked ................................................................................... 12 
2.2.3 Hilbert Spaces and Tensor Products ..................................................................... 14 
2.2.4 The Geometric Algebra Alternative ...................................................................... 15 

2.3 Classical Versus Quantum Computing ........................................................................ 16 
2.3.1 States and Vectors for Bits versus Qubits ............................................................. 17 
2.3.2 Superposition and Entanglement .......................................................................... 18 
2.3.3 Classical versus Quantum Algorithms .................................................................. 20 
2.3.4 Quantum Computers ............................................................................................. 21 

2.4 Steps in Quantum Computing ....................................................................................... 21 

CHAPTER 3 BOOLEAN LOGIC IN QUANTUM COMPUTING ...................................... 23 

3.1 Unitary Transforms and Rotations ............................................................................... 23 
3.2 Reversible Computing ................................................................................................. 24 
3.3 Universal Logic and Quantum Gates ........................................................................... 25 
3.4 Toffoli and Fredkin Reversible Gates .......................................................................... 26 



 viii 

3.5 Boolean Logic and Operators Using Linear Mathematics ........................................... 28 
3.5.1 Boolean Logic in Galois Fields ............................................................................. 28 
3.5.2 XOR Dominated Logic ......................................................................................... 30 
3.5.3 Toffoli and Fredkin Gates in GF(2) ...................................................................... 31 
3.5.4 Boolean Logic is formally non-linear ................................................................... 33 

CHAPTER 4 GEOMETRIC ALGEBRA FOUNDATIONS ................................................. 35 

4.1 Matrix versus Algebraic Notation ................................................................................ 35 
4.2 Co-Occurrence and Co-Exclusion ............................................................................... 36 
4.3 Geometric Algebra Principles ...................................................................................... 40 

4.3.1 Scalars and Vectors ............................................................................................... 41 
4.3.2 Bivectors and Anticommutative Multiplication .................................................... 42 
4.3.3 N-vectors and Mixed Rank Expressions ............................................................... 45 
4.3.4 Number of Elements in a Geometric Algebra ....................................................... 47 
4.3.5 Quaternions in Geometric Algebra ....................................................................... 48 
4.3.6 Inner Product Definition ....................................................................................... 50 
4.3.7 Outer Product and Inner Product Examples........................................................... 52 

4.4 Geometric Algebra Tools for Boolean Logic .............................................................. 54 
4.4.1 Boolean Logic in GA ............................................................................................ 54 
4.4.2 GA Evaluator ........................................................................................................ 57 
4.4.3 Universal Logic Decode in GA ............................................................................. 60 
4.4.4 GA Generator ........................................................................................................ 68 

4.5 GA Expression Solver Tool ......................................................................................... 70 
4.6 Cartesian Distance Metric ............................................................................................ 73 
4.7 Computational Basis and Projectors ............................................................................ 75 
4.8 Determinants in Geometric Algebra ............................................................................ 82 
4.8 Summary of Logic in Geometric Algebra ................................................................... 84 

CHAPTER 5 SINGLE QUBIT REPRESENTED IN GEOMETRIC ALGEBRA................. 86 

5.1 Qubit as Co-Occurrence of Two States ....................................................................... 86 
5.2 Pseudoscalar is Spinor Operator .................................................................................. 89 
5.3 Hadamard Transform ................................................................................................... 89 
5.4 Pauli Spin Matrix Transforms ...................................................................................... 90 
5.5 Alternative Basis Sets .................................................................................................. 92 
5.6 Qutrits for Spin-1 Particles .......................................................................................... 98 
5.7 Qudit for Hd Quantum Systems .................................................................................. 99 
5.8 Phase Shift Transform .................................................................................................. 99 

CHAPTER 6 MULTIPLE QUBITS REPRESENTED IN GEOMETRIC ALGEBRA....... 102 

6.1 Qubit Interaction in Quantum Register as Tensor Product......................................... 102 
6.2 Propagation of Null States .......................................................................................... 106 
6.3 Pauli Spin and Cross-Qubit Singlets ........................................................................... 107 
6.4 Sequential and Concurrent Application of Spinor Operators ..................................... 108 
6.5 Concurrent Hadamard Transform and Ebits ............................................................... 110 
6.6 Concurrent Hadamard Transform and Alternative Bases ........................................... 110 



 ix 

6.7 Entanglement Means Co-occurrence with Cross-Qubit Spinor .................................. 117 
6.8 Bell Basis States are Irreversible in Q2 ...................................................................... 118 

6.8.1 Discarded Phase Information in Bell States......................................................... 119 
6.8.2 No Multiplicative Inverse for (SA + SB) ............................................................... 120 
6.8.3 Recursive Operator Erases Phase Information .................................................... 120 

CHAPTER 7 QUANTUM COMPUTING IN GEOMETRIC ALGEBRA.......................... 124 

7.1 Single Qubit Operators ............................................................................................... 124 
7.1.1 Operators as Computational Basis Vectors.......................................................... 126 
7.1.2 Single qubit measurements .................................................................................. 128 

7.2 Two-Qubit Operators .................................................................................................. 131 
7.2.1 Control-Not Gate for Q2 ..................................................................................... 132 
7.2.2 Control-Hadamard Gate for Q2........................................................................... 136 
7.2.3 Two qubit measurement....................................................................................... 138 
7.2.4 Computational Basis for Two Qubits .................................................................. 138 

7.3 Three-Qubit Operators ................................................................................................ 140 
7.3.1 Toffoli Gate in Q3 ............................................................................................... 140 
7.3.2 Fredkin Gate in Q3 .............................................................................................. 143 
7.3.3 Computational Basis for Three Qubits ................................................................ 144 
7.3.4 Bell Basis for Three Qubits.................................................................................. 144 
7.3.5 Three qubit measurement..................................................................................... 146 
7.3.6 Example Quantum Computation.......................................................................... 146 

CHAPTER 8 SUMMARY AND CONCLUSIONS ............................................................. 147 

8.1 Summary of Contributions.......................................................................................... 147 
8.2 Conclusions ................................................................................................................. 154 
8.3 Future Effort................................................................................................................ 155 

APPENDIX A FREDKIN GATE USING GALOIS FIELD(2) ........................................... 156 

APPENDIX B PERL SOURCE CODE FOR GA.PL TOOL............................................... 162 

APPENDIX C PERL SOURCE CODE FOR GANDG.PL TOOL ...................................... 173 

APPENDIX D PERL SOURCE CODE FOR GAG.PL TOOL............................................ 174 

APPENDIX E PERL SOURCE CODE FOR GASOLVE.PL TOOL.................................. 177 

APPENDIX F PERL SOURCE CODE FOR SHARED PERMUTATION.PL FILE ......... 180 

APPENDIX G PERL SOURCE CODE FOR SHARED GALIB.PL FILE ......................... 182  

APPENDIX H SUMMARY OF NOTATION AND BASES .............................................. 185 

REFERENCES .................................................................................................................... 187 

VITA 



 x 

 

 

 

LIST OF TABLES 

 
Table 3.1: Some important logic operators ............................................................................. 25 

Table 3.2: Logic Tables for Fredkin and Toffoli Gates .......................................................... 27 

Table 3.3: Karnaugh Maps of Intrinsic Logic Operators in GF(2) ......................................... 29 

Table 3.4: GF(2) is Boolean Complete ................................................................................... 29 

Table 3.5: Logic Inclusive OR for {2, 3, 4} input states in GF(2) ......................................... 31 

Table 3.6: Fredkin Gate as Matrix Operator in GF(2) ............................................................ 32 

Table 3.7: Toffoli Gate as Matrix Operator in GF(2) ............................................................. 32 

Table 4.1: Product Summary .................................................................................................. 46 

Table 4.2: Comparison of outer and inner products for G2 .................................................... 53 

Table 4.3: Outer and Inner product pairs for G3 ..................................................................... 53 

Table 4.4: Addition and Multiplication Tables for G2............................................................ 54 

Table 4.5: Binary Mapping Tables for Operators in G2 ......................................................... 55 

Table 4.6: Logic Map Reasoning Table for G2 ...................................................................... 56 

Table 4.7: Boolean Logic Summary Table for G2 .................................................................. 56 

Table 4.8: Summary of Logic Operations for {±, 0} in G2 .................................................... 62 

Table 4.9: Summary of Logic Operations in G3 ..................................................................... 64 

Table 4.10: Product terms (1±a)(1±b) and (1±b)(1±a) show phases for G2 .......................... 72 

Table 4.11: Difference between two Scalars for G1 ............................................................... 73 

Table 4.12: Ternary Number Label Notation for G1 = span{a} ............................................ 74 



 xi 

Table 4.13: Eigenvector Summary from Ek Rk = Rk for G2 .................................................... 78 

Table 4.14: Eigenvectors EK are major axes that form Dual Tetrahedrons in G2................... 79 

Table 4.15: Computational Operators encoded as geometric products for G2 ....................... 80 

Table 4.16: Linear Independence of Decode States in Karnaugh Map for G2 = span{a, b} . 84 

Table 5.1: Summary of Qubit State Meaning ......................................................................... 88 

Table 5.2: Summary of Spinor SA = (a0 a1) Action on Qubit States in G2
– .......................... 89 

Table 5.3: Alternative Reversible Basis Encodings for Qubit A in G2 ................................... 94 

Table 5.4: Computational Basis Measurement (A)(1 ± a0)(1 ± a1) for G2 ............................ 96 

Table 5.5: Sparse Invariant States ±I  for G2 ........................................................................ 96 

Table 5.6: Computation Basis Measurement Destroys Qubit Symmetry for G2 .................... 98 

Table 6.1: Summary of Basis States using spinor singlets {S00, S01, S10, S11} for Q2 ......... 115 

Table 6.2: Summary of Bell/magic States times Recursive Operators for Q2 ..................... 116 

Table 6.3: Masked Operator States (–1 – SA SB)(SA + SB) = 0 for Q2 .................................. 121 

Table 7.1: Operator and Basis Summary for Single Qubit A in Q1...................................... 124 

Table 7.2: Operator Summary for 41 out of 81 states for Q1 ............................................... 125 

Table 7.3: Computational Products as Independent States for Q1 ....................................... 126 

Table 7.4: Operators as Concurrent Vectors in Q1 ............................................................... 127 

Table 7.5: Reversible Basis Encoding Results in Q1 ........................................................... 130 

Table 7.6: Desired Control-Not Operator X = +a1 where (a1 b1) X = – b1......................... 132 

Table 7.7: Summary of Operator CNOTAB = A0 for Q2 = {A, B} ......................................... 134 

Table 7.8: Row by Row Operator Solutions for CNOT for Q2 = {A, B}.............................. 135  

Table 7.9: Operator Summary for Q2 = {A, B} .................................................................... 137 



 xii 

Table 7.10: Valid State Rows for A0 B0 C0 TOFAB in Q3 ..................................................... 143 



 xiii 

 

 

 
LIST OF FIGURES 

 
Figure 3.1: Karnaugh Maps of Logic OR using XOR logic ................................................... 30 

Figure 4.1: Co-occurrence and Co-exclusion Concepts ......................................................... 38 

Figure 4.2: Bivector Defines an Oriented Area (via right hand rule) ..................................... 42 

Figure 4.3: Spinor Plane ......................................................................................................... 45 

Figure 4.4: First seven rows of Pascal’s Triangle ................................................................... 47 

Figure 4.5: Quaternions as Bivectors in three dimensions ..................................................... 49 

Figure 4.6: Sample Outputs from ga.pl Tool.......................................................................... 58 

Figure 4.7: Example Products and Table Controls for ga.pl Tool.......................................... 59 

Figure 4.8: First attempt for multivector a + b + a b in G2 ..................................................... 60 

Figure 4.9: Second attempt produces two-input Logic AND in G2........................................ 60 

Figure 4.10: Inversion of Logic AND Produces 2- input Logic NAND in G2 ........................ 61 

Figure 4.11: Two-input Logic OR and NOR in G2 ................................................................ 61 

Figure 4.12: Logic AND for {+, –} in G3............................................................................... 63 

Figure 4.13: Logic NAND for {–, 0} in G3 ............................................................................ 63 

Figure 4.14: Validation of logic AND for up to ten vectors using {+, 0} .............................. 65 

Figure 4.15: Arbitrary Row Decode Rk for Vectors in G2 ...................................................... 67 

Figure 4.16: Addition and Subtraction of ROW 1 and ROW 3 for vectors in G2 .................. 68 

Figure 4.17: GA Generator Tool Examples ............................................................................ 69 

Figure 4.18: Examples of gasolve.pl for G2 ........................................................................... 71 



 xiv 

Figure 4.19: Solve for eigenvectors where (ek)2 = 1............................................................... 76 

Figure 4.20: Solve for eigenvectors where ek (1+ ek) = (1+ ek) .............................................. 76 

Figure 4.21: Major diagonals form eigenvectors E0-3 on left and duals E7-4 on right for G2.. 77 

Figure 4.22: Sides of dual tetrahedrons form P0-3 on left and duals P7-4 on right for G2 ....... 79 

Figure 5.1: Qubit as Co-occurrence of G2
– state vectors ........................................................ 87 

Figure 5.2: Qubit State Difference decodes Classical States in G2
– ....................................... 87 

Figure 5.3: Illustration of Qubit States for 90° and 180° Rotations ....................................... 90 

Figure 5.4: On-axis and Off-axis Bases for G2
– on left and G2

+  on right............................. 95 

Figure 5.5: Spinor in Spin-down, spin-up, and superposition states (from IBM) ................ 100 

Figure 6.1: Non-Zero Qubit States for Q2 and Q3 ............................................................... 103 

Figure 6.2: Non-Zero Qubit States for Q4 ............................................................................ 104 

Figure 6.3: Non-Zero Qubit States for Q5 and Q6 ............................................................... 105 

Figure 6.4: Pair-wise Cancellation of Null States in Q2....................................................... 106 

Figure 6.5: Concurrent Hadamard Transform for Q2 ........................................................... 108 

Figure 6.6: Concurrent Hadamard Transform for Q3, Q4 and Q5 (truncated tables) .......... 109 

Figure 6.7: Square of Concurrent Hadamard (SA + SB)2 = (1 – SA SB) in Q2 ....................... 112 

Figure 6.8: Validation of Magic State Phase Relationship M3 =B0 – S00 in Q2 .................. 118 

Figure 6.9: Summary of Bell and magic states using Pauli basis singlets ............................ 122 

Figure 7.1: Full Matrix Decode of CNOTAB gate output for Q2 = {A, B} ............................ 134 

Figure 7.2: Control-Hadamard Operator CHADAB for Q1 = {A} and Q2 = {A, B}.............. 136 

Figure 7.3: Fredkin Gate States for Q3 in Pauli Basis .......................................................... 143 

Figure 7.4: Entangled Concurrent Hadamard States for Q3 ................................................. 145 



 1 

CHAPTER 1  

INTRODUCTION TO QUANTUM COMPUTING 

 
The original motivation for this dissertation was to understand how the fundamental 

computational resources of space and time differ between classical and quantum computers. 

It was anticipated that if Boolean logic could be represented as a set of simultaneous linear 

matrix equations for both classical and quantum systems, then insightful distinctions would 

arise about the nature of information, space, time, concurrency, reversibility, and 

computation. The minimum outcome expected from this approach was that, by representing 

Boolean logic in a formal linear mathematical framework, it would be possible to create 

better logic tools that treat logic and registers in a unified way. This goal of representing 

Boolean logic in a linear mathematics is the conceptual glue that binds this dissertation while 

connecting the computer engineering perspective to the math and physics domains. 

 

1.1 Problem Definition 

Quantum computing promises the delivery of unbelievable performance compared to 

classical computers. This promise was encouraged by Peter Shor’s 1994 discovery of a 

quantum-computing algorithm [34] that would efficiently factor the product of two large 

prime numbers. The difficulty of factoring the product of two large prime numbers is the 

basis for many computer encryption techniques because, independent of technology, it is 

computationally “difficult” to factor using any classical computer. Quantum computers 
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running Shor’s algorithm, in contrast, can solve this type of problem rela tively easily with 

linear time increase in effort for a linear growth of the problem size. This ability defines a 

new computational complexity class called Quantum Polynomial Time. In spite of this 

immense computational speedup, very few people can comprehend or apply this result 

because the existing mathematical notation for expressing quantum computing is derived 

from, and conceptually indebted to, traditional quantum mechanics which, lacking any notion 

of concrete mechanism is opaque. This dissertation therefore proposes an alternative 

mathematical representation for quantum computing. 

1.1.1 Why Quantum Computing is Important 

Historically, quantum computing was interesting because of the fundamental relationship 

between information and quantum mechanics. Visionaries such as Richard Feynman [11] and 

Rolf Landauer [19] worked on the problem over 40 years ago. During the last 20 years, 

researchers in this field justified working on this problem as preparing solutions for the 

predicted nanometer scaling limits of classical computers (cf. nanoelectronics). As a result of 

Shor’s discovery, this quest was accelerated by the desire for a drastic increase in computing 

performance, as well as a growing interest in such uniquely quantum mechanical applications 

as quantum cryptography [4] and quantum teleportation [5]. 

 

My own interest in this field originates with the understanding that classical computers are 

intrinsically limited, not by technology or energy concerns, but rather because information 

encoded as energy or matter is primarily segregated and limited by the nature of space and 

time [27]. Information encoded using quantum states somehow bypasses these classical 

information encoding limits and creates a non- local and a-temporal information wholism, as 
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required by large scale quantum consistency. Even though information encoded as quantum 

states is not synonymous with energy, it must still be physical in order to be consistent with 

the second law of thermodynamics and black hole mechanics [31]. Quantum computing is 

the ideal place to study the core relationship between information and the classical 

computing resources of space and time. True computational concurrency is not possible 

except in the quantum domain because causal spacetime segregates classically encoded 

information. 

1.1.2 Understanding Quantum Computing is Difficult 

Classically trained computer engineers and programmers seem ill equipped to participate in 

the quantum computing revolution unless they have been educated in the specialized math 

and physics of quantum computing. The quantum computation rules are so different from 

classical computing that currently this field is inhabited predominantly by physicists and 

mathematicians. Unfortunately, many of these researchers lack the sophisticated and well 

developed programming skills to build the development environment tools needed to 

program complex and unintuitive quantum systems. This is a classic skills-mix problem and 

the goal is to provide the tools needed by designers of quantum computing systems. 

 

The quantum rules are so bizarre and therefore counterintuitive that most traditional classical 

programming techniques do not apply because they depend on implicit assumptions about 

spacetime, information representation, energy, and causality that are inappropriate in the 

quantum domain. Additionally, many new concepts such as reversibility, superposition, 

entanglement, high dimensional spaces, and true concurrency add additional confusion to the 

already unfamiliar mathematical terrain [25].  
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1.1.3 Expanding the Quantum Computing Industry  

Since quantum computing is both fundamental and important, the computing industry needs 

more engineers and programmers to participate in its understanding and development. The 

traditional computer industry has an inverted developers’ pyramid within which a relatively 

small percentage of designers build hardware while many more people build tools such as 

editors, assemblers, linkers, libraries, compilers, debuggers, operating systems, networks, and 

other infrastructure utilities. The next larger group of people builds application-specific 

software on top of the hardware and software infrastructure. Finally, a very large group of 

customers use these applications and are supported by sales and service personnel. 

 

This same development progression must occur in order to make quantum computing a 

success, which of course assumes it is sufficiently general in purpose to support important 

applications or that it acts as the transition technology when conventional electronics scales 

into the nanoelectronic region. The diverse occupations listed above will not be primarily 

staffed by physicists and mathematicians because of an inappropriate skills mix. Engineers 

and programmers must somehow get involved in the quantum tools and programming effort 

and this can only be accomplished if a mathematical bridge [21] exists to facilitate the 

building of the required software tools and applications. Such an approach to quantum 

computing is proposed in this dissertation, using an already defined algebra. 

1.2 Intended Audience 

This dissertation is primarily intended for classically trained computer engineers and 

programmers without previous exposure to quantum computing or its mathematical 

underpinnings (usually using Hilbert space matrix notation). The goal is to gent ly define, 



 5 

using geometric algebra, the concepts and mathematical representations needed for 

understanding quantum computing without any prior background except training in 

conventional computer design and programming. Despite this approach and targeted 

audience, another goal is to be faithful to physics, reproducing the usual quantum physics 

descriptions of devices and phenomena in a new language. The ultimate goal is to provide a 

common mathematical language and tool framework that acts as a bridge between engineers 

and physicists.  

1.3 Improving Understanding and Building Tools 

Quantum mechanics in Hilbert space is traditionally described using Dirac’s “bra-ket” 

notation , where the “ket”  is a column vector and its transpose the “bra”  is a 

row vector. This matrix notation is compact and terse, and represents a language and 

conceptual barrier to engineers and programmers in the same way that physicists and 

mathematicians may not comprehend the latest computer definitions, programming 

languages, or concepts. Furthermore, the Hilbert spaces usually employed in quantum 

mechanics rely on complex numbers, which also creates a representational mismatch because 

of the semantic gap between complex numbers and the binary 1’s and 0’s of computers.  

 

Geometric algebra [16] provides a mathematical alternative that is isomorphic to Hilbert 

spaces in expressing the high-dimensional spaces that inevitably occur, but using only real 

(rather than complex) numbers. Additionally, geometric algebra uses an algebraic rather than 

a matrix notation, similar to Boolean algebra, thereby making it more palatable to engineers 

and programmers. Real numbers more closely match the traditional Boolean logic 

representation and mindset of classical programmers, thereby facilitating understanding and 
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encouraging the creation of customized tools for quantum computing. Since geometric 

algebra is considered to be a universal mathematical language for physics and engineering 

[21], it should also be useful for exploring quantum computing. The geometric algebra 

required for this research is described in Chapter Four.  

1.4 Summary of Results  

This dissertation demonstrates that arbitrary Boolean logic equations and operators can be 

represented in geometric algebra as linear equations composed entirely of orthonormal 

vectors using only addition and multiplication. A set of tools is defined, built, and described 

that generate, simplify, evaluate, print, and solve Boolean logic equations written as 

geometric algebra expressions. Quantum bits (qubits) and quantum registers are expressed 

using this representation and the new tools are used to discover, define, and explore the 

states, operators, and intrinsic properties that are important to quantum computing. These 

results demonstrate that geometric algebra appears to faithfully capture central quantum 

computing concepts, enabling deeper insight into the mechanisms behind quantum 

computing as well as the direct creation of efficient quantum computing development tools. 
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CHAPTER 2  

THE UNIVERSE IS A QUANTUM COMPUTER 

 
The universe is really a very large extended quantum simulation [12] whose outcome is the 

classical world view we experience around us. This fact is accepted because the inverse 

scenario is impossible, since classical computers cannot efficiently simulate quantum 

mechanical systems. Even empty space and black holes are filled by invisible, nonphysical 

quantum states (or zero-point energy), which represent a very high-dimensional quantum 

foam or ether that can only be observed as a small projection into our 4D spacetime.  

 

This accepted understanding means that quantum states are protophysical [28], since they are 

more fundamental than classical entities such as space, time, energy, or matter. This idea 

agrees with the “big bang” theory of cosmic evolution in which quantum states existed before 

classical features appeared. Since primitive quantum states encode (or are) information, 

information is primitive and the start of the universe represents a quantum “bit bang” [23]. 

 

2.1 Information is Primitive and Physical 

IBM Fellow Rolf Landauer lectured for years that “information is physical” [20]. In this he 

opposed the prevailing thought during most of this century that computation took a minimum 

theoretical amount of energy proportional to the thermal noise of a molecule at room 

temperature [26]. Landauer argued that the irreducible cost of computing was not the 
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computation itself, but rather was due to erasing information, which releases a small amount 

of energy consistent with thermodynamics. With the efforts of others, Landauer’s Principle 

ultimately led to the field of reversible computation [6][13]. 

 

Landauer’s Principle requires that information be conserved in order to be consistent with the 

2nd Law of Thermodynamics, even when the information is encoded as quantum phase states. 

Bekenstein and Schiffer ultimately showed [2][32][33] this physical reality of quantum-

encoded information by demonstrating that, when a quantum state is thrown into a black 

hole, the surface area size increases by the minimum discrete amount of one bit, which is 

approximately Planck’s area = 2h , where Planck’s constant is 346.626 10h x −= Js. 

 

Black holes are therefore bit buckets, due to the combined laws of thermodynamics, quantum 

mechanics, gravity, and information theory. The surface area of the black hole is known as its 

event horizon (or entropy, measured in bits), and represents the boundary between our 

physical 4D spacetime and the quantum dimensions inside (that form the singularity). Since 

time is infinitely dilated and space infinitely contracted within a black hole, the entire 

perspective inside is experienced as a single spacetime point, exactly like the observer frame 

of a photon. This understanding intimately ties the physicality of information, encoded as 

high-dimensional spaces, to physical observables such as space, time, energy, and gravity. 

 

This relationship between the physicality of information and physical observables can be 

examined from a computational complexity perspective rather than the above classical 

energy viewpoint. For example, take an NP-complete computer algorithm and scale the 

problem so that solving it using today’s most advanced fixed size computer technology 
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would take longer than the age of the universe. This spatially limited algorithm thus has 

unlimited temporal extent.  Now temporally restrict this solution to a relatively small time T 

and compute the number of processors N working in parallel to solve it in that time T. The N 

processors each of mass m communicate using light traveling at the speed of light c, thereby 

roughly defining a sphere of diameter *d T c≈ . The total mass M = N * m of this computer 

must fit into the volume of this sphere, and as the problem size increases, the mass grows 

exponentially faster than its volume and exceeds the black hole mass density limit. Even 

though a classical computational solution therefore cannot be built, this class of problem can 

be solved using quantum computers. Therefore, even though quantum states are physical, 

they must have a completely different relationship to space, time, and information than 

computers made with mass, information encoded as energy, and computation responsive to 

classical causality rules. 

2.2 High Dimensional Spaces 

Computation is smarter the greater the number of independent degrees of freedom because 

more dimensions mean more information is local simultaneously. The unit distance locality 

metric (number of neighbors at unit distance away from any grid point) in a discrete cellular 

grid is simply 2n, where n is the number of orthogonal dimensions. As will be formally 

shown later in this chapter, every qubit represents two separate degrees of freedom (i.e. 

dimensions), so large quantum systems represent many more degrees of freedom than are 

possible in a 3D physical space.  

 

When information is non-adjacent, it must be moved if it is to be used in a later decision. 

Based on this thinking and assuming scaling is at the maximum, it is impossible to simulate 
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any number of dimensions in fewer than that number of dimensions without the appearance 

of some kind of anisotropic behaviors, because the locality metric is no longer uniform. 

Quantum systems can be smarter than classically constrained computers because they 

possess a locality metric proportional to the number of degrees of freedom and this space- like 

locality represents a primitive computational resource. This is also the primary reason why 

3D classical computers cannot efficiently simulate high-dimensional quantum systems. 

 

The key to understanding quantum computing is to learn about the physical reality of 

quantum state information encoded in high-dimensional spaces. Mathematically speaking, 

quantum bits (qubits) are represented as two orthogonal vectors, so each dimension can 

change independently of the other, thus allowing all possible combinations of these vector 

states, and hence capable of expressing both classical and superposition phase states. Many 

qubits entangled in a quantum register thus create an exponentially larger number of linearly 

independent dimensions, due to the tensor product operator combining the orthogonal vector 

states of every qubit. As operators evolve the overall system state, the independent states 

become constrained due to the erasure of information but still represent the same large 

number of dimensions. In contrast, the state space size does not exponentially expand for 

classical systems. 

 

The concept that mathematically ideal quantum states actually encode information is foreign 

to most computer scientists and engineers, since historically they have been taught the now 

obsolete idea that energy is synonymous with information encoding (except in classical 

communications systems). These mathematically ideal dimensions must however be physical 
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in order to have a tangible effect on the 4D universe. The quantum states and their associated 

information metric constitute the bookkeeping method for tracking bits, just as the energy 

metric is the bookkeeping method for the 2nd Law of Thermodynamics. Quantum systems 

represent a particle/wave duality and also an energy/information duality with separate ledgers 

for energy and state information. Erasing information represents a transfer I →E between 

these two ledgers, whereas adding information means the transfer E → I. 

2.2.1 High Dimensional Metrics versus Intuition 

High dimensional spaces are difficult to understand because the intuition we develop for one, 

two and three dimensions does not scale to n dimensions where say n >>20. For example, 

metrics based on the Cartesian distance (square root of the sum of the squares) between two 

points in an n-dimensional unit hypercube have the following properties:  as n becomes large, 

the expected mean or standard distance between any two random points grows as d = /6n  

(as one might expect), but the standard deviation of a random collection of points at the 

distance d approaches the constant s = 7/120 .2415=  [22]. For example for n = 3, then d = 

.707 and most points lie at distance .707 ± .24 but for n = 30 then d = 2.23 so most points lie 

at distance 2.23 ± .24. 

 

This experimentally verified result is unexpected, and therefore unintuitive, because it means 

that two randomly chosen points are likely to be the standard distance apart from each other 

and it is statistically highly unlikely to find randomly chosen points closer or farther away. 

This property makes high dimensional spaces useful as content addressable or error 

correcting memories [17]. Another unintuitive property is that the volume of an n-

dimensional hypercube lies near its surface, similar to the event horizon surface area of a 
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black hole. For these reasons, much of the work in high-dimensional spaces is done using 

purely mathematical techniques. Few engineers or programmers have much experience or 

insight regarding the meaning or practical uses of these spaces.  

2.2.2 Space and Time are Linked 

Einstein showed that space and time are linked together in an integrated 4D spacetime 

framework. This classical spacetime must emerge from the high-dimensional framework of 

quantum mechanics, as described in Wheeler’s “It from Bit” paper [36]. Therefore the 

quantum domain must have a different kind of primitive temporal framework, if for no other 

reason than it exists in a completely different spatial environment.  Conceptually, this proto-

temporal framework is identical to the synchronization tokens and mechanisms used by 

asynchronous logic [29] and the work of Manthey [23] (not to mention that of C.A. Petri in 

the 1960s and 70s). The understanding of quantum time is very important to computation 

because time is a major computational resource related to how a computation synchronizes 

and changes state.  

 

This idea can be easily envisioned by adapting a thought experiment devised to illustrate 

relativistic time dilation.  In a variation of that famous thought experiment, we postulate twin 

astronauts, one of whom stays on earth while the other takes a ride in a spaceship for 20 

years at 0.995 the speed of light. Each astronaut took one of two identical computers, both of 

which are tasked with solving the same set of 200 problems, each of which is estimated to 

take 10% of a year to complete.  For the humans involved, the twin staying on earth ages 20 

years. Due to time dilation, his brother ages only 2 years during the 20 earth years and arrives 

home 18 years younger than his twin brother. Slowing down human aging is generally 
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labeled as good. For the twin computers, the outcome is interpreted somewhat differently. 

The computer on earth finishes all 200 problems just as the spaceship returns. The onboard 

computer however has finished only 20 problems. Slow computation is considered to be bad. 

Time dilation therefore is considered to be good for humans but bad for computers because 

the key computational resource of classical time slows down. 

 

Quantum superposition exhibits a completely different temporal abstraction than time 

dilation because it represents an ideal concurrency, effectively outside of conventional time. 

This concurrency is a direct result of the independent spatial degrees of freedom, since a 

countable but practically infinite locality metric exists for high-dimensional spaces. If all 

independent states can simultaneously interact due to superposition, then no delay is required 

to complete a piecewise decision process. Since these states also have no mass, they also 

need no spatial separation, and are similar to a small singularity as found in a black hole. 

 

Ideal concurrency due to superposition must be valid for quantum states, otherwise placing a 

detector after one of the slits in the twin-slit experiment could not retroactively create the 

self-consistent effect of the single pho ton passing only through the other slit. Quantum 

energy eigenstates act like a memory constraint mechanism because they exist outside 

classical time (or persist through time) and all possible interaction sequences must be self 

consistent. True superposition concurrency with unlimited local spatial extent (a la Einstein-

Podolsky-Rosen - EPR) [3] is possible only for quantum-encoded states and is impossible for 

classically encoded ones. 
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Quantum-encoded states directly address both primary computation resources (i.e. space and 

time) by allowing an unlimited locality metric, thus eliminating the need for the sequential 

integration of partial results. Quantum systems are always self-consistent because they act as 

a whole, which again is only possible with the unlimited spatial locality of a high-

dimensional space, thereby enabling true concurrency (cf. co-occurrence) [23]. Interaction of 

disjoint finite sets of dimensions (operators and resulting co-exclusions [23]) creates a 

synchronization-based proto-time from which classical time and energy metrics ultimately 

emerge. Co-occurrence and co-exclusion will be discussed further in Chapter Four. 

2.2.3 Hilbert Spaces and Tensor Products 

Matrix notation is a compact way of expressing simultaneous linear systems, and has been 

extensively used. The original goal of this dissertation was to map the Boolean logic of 

traditional computing into matrix notation in the hope of gaining mathematical insight and 

formalism for classical computing and parallelism. Since quantum computing is also 

represented this way, though as reversible linear matrices and unitary operators in high-

dimensional Hilbert space, this effort was quietly extended to include the quantum 

computing notion of true concurrency. 

 

Traditionally, qubits and quantum systems have been described [15] using complex-valued n-

dimensional Hilbert spaces, denoted as nH . A single qubit, denoted as 2H , is the sum of 

two complex-valued basis variables 0 1ψ α β= +  using Dirac’s bra-ket notation, where 

1
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=  
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=  
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2 2
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the probability amplitudes and their square is the probability of that state’s occurring. 

Operators are square matrices that allow linear combinations of these basis vectors. 

 

Quantum registers combine q = n/2 qubits to form larger Hilbert spaces n=2q2
H  using the 

tensor product ( )⊗  operator to form 
2 1

1 2
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...
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q i
i
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=∑ . The number of states grows as the power 

2q  of the number of qubits due to the tensor product operator. While the above definitions 

are pleasantly concise to mathematicians, they are terse and enigmatic to engineers and 

programmers. Complex-valued states, bra-ket notation, and the tensor product are all 

notational ideas that are much simpler to describe and understand using geometric algebra. 

The focus of this dissertation is therefore to provide an alternative and more palatable 

mathematical language for understanding, representing, and exploring quantum computing. 

2.2.4 The Geometric Algebra Alternative 

Geometric algebra relies on real numbers rather than complex numbers.  This is topologically 

easy to understand, because a complex number is really a point in a two-dimensional plane, 

and can be directly represented in geometric algebra using two orthogonal real-valued 

vectors and some scalars. 

 

Matrix algebra is non-commutative and so is geometric algebra. The big difference is that 

geometric algebra uses an algebraic rather than a matrix notation.  Non-commutativity means 



 16 

that multiplication order is important, since right side multiplication produces a different 

result from left side, such that a * b ≠  b * a. This is obvious for matrix operators that are not 

square. Some matrices A have no multiplicative inverses A-1 defined for them and this is also 

true for some expressions in geometric algebra. In both algebras where A-1 is undefined, the 

determinant, which is used in the denominator for computing the multiplicative inverse, is 

zero; that is det(A) = 0 so 1/det(A) = ∞ , i.e. is undefined. 

 

The high dimensional geometric algebra is implicitly non-commutative without using 

matrices because its geometric product is the sum of the inner (or dot) and outer (or wedge) 

products [16]. The outer product is non-commutative, such that ∧ = − ∧a b b a  for 

orthogonal vectors {a, b}. The geometric product will be shown to be equivalent to the 

tensor product when using the correct representation for qubits, complex numbers are 

replaced by the geometric product of vectors, and algebraic notation replaces matrices and 

“ket”s. All of these simplifications make a geometric algebra approach to quantum 

computing rather more palatable to engineers, but nevertheless equivalent (and perhaps 

superior) to the Hilbert space approach. Chapter Four is devoted to geometric algebra 

fundamentals. 

2.3 Classical Versus Quantum Computing 

Several definitions used in quantum computing have a slightly different contextual meaning 

than their classical counterparts. Also, quantum computing contains ideas that are not present 

in classical computing. This section is an introduction and guide to these differences. 
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2.3.1 States and Vectors for Bits versus Qubits 

A bit is a representation of two possible binary states denoted as {–, +} or {false, true} but is 

often expressed as the implementation-specific binary values {0, 1}. In the following 

chapters, please know that the {–, +} binary representation in particular does not imply the 

values {0, 1}. A classical bit can be mathematically expressed as a vector because it 

represents a single independent degree of freedom. The primary property of the binary states 

of a classical bit is they are mutually exclusive and inverting either state produces the other. 

These are the only possibilities in a classical world. 

 

Multiple bits can be represented as multiple, orthogonal bit-vectors “concatenated” together, 

which means that their bit values can change independently of each other, resulting in 2n 

possible state combinations. The state thus produced by concatenating multiple bit-values can 

be thought of as a numeric binary address representing one of the corners of an n-

dimensional unit hypercube. Since each vector’s binary states are mutually exclusive, the 

concatenated states also exclude all others, so effectively the vector address means only a 

single corner of the hypercube can be represented at a given instant. Inverting this address 

(i.e. composite state) is equivalent to addressing the diagonally opposite corner of the 

hypercube. Classical bits and states are clearly separate but closely related concepts. 

 

Quantum bits or qubits exhibit a slightly different relationship between vectors and states. A 

classical bit uses a single vector to represent its two mutually exclusive states. In contrast, a 

qubit must additionally handle the physically observed cases when the two states are 

simultaneously both on or both off so the representation requires two independent binary-
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valued vectors to encode those four possibilities. The simplest way to encode this is to assign 

each quantum state its own unique vector, which makes the states independent of each other. 

As a result, vectors represent bits in the classical case but states in the quantum case. 

 

Under these conditions, an individual state vector has the mutually exclusive modes of either 

on = “+”, or when inverted, off = “–” = not on. Each state vector can be independently placed 

in the mutually exclusive states of either on or off. In order not to confuse the use of the word 

“state,” when classical states are mapped to individual vectors in qubits, the word state will 

refer to one of the unique combinations of a set of orthogonal vectors, and this terminology is 

independent of whether the states are mutually exclusive or not.  

2.3.2 Superposition and Entanglement 

In any case, the qubit representation allows a qubit to represent the possibility of being in the 

classical state “+” and classical state “–” simultaneously, which is impossible for classically 

encoded bits. The qubit state to simultaneously express two mutually exclusive classical 

states is called superposition. Superposition is initially difficult to understand because it 

simultaneously represents both True and False, both Catholic and Protestant, or both 

Republican and Democrat. This idea is very hard to grasp coming from a traditional 

computing perspective where these states are historically regarded as obviously mutually 

exclusive. Superposition violates the Aristotelian law of the excluded middle. 

 

The best way to think about such non-mutually exclusive states is to envision sets of states, 

where each state is represented by its own vector. The traditional classical bit-encoding can 

then be represented when the two vectors have opposite semi-redundant values such as 
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{Catholic=on, Protestant=off} which means the same as {Catholic, not Protestant}. 

Additionally its inversion can be expressed as {not Catholic, Protestant}. Alternatively, the 

superposition states are represented when both values are the same, resulting in the set 

{Catholic, Protestant} or its inversion {not Catholic, not Protestant}. A qubit can be 

initialized to a particular starting state using standard quantum operators (Inversion and 

Hadamard). 

 

The tensor product operator ( )⊗  is now easy to understand using this state set model 

because combining the two qubits {C=Catholic, P=Protestant} ⊗  {R=Republican, 

D=Democrat} produces all combinations of these sets, which is {C R, C D, P R, P D}. 

Quantum operators applied to this product set would simultaneously work on each 

combination. The orthogonal vectors that represent these sets of concurrent states for each 

qubit are not concatenated together like classical bits but written as the linear sum of vectors 

(C + P) and (R + D). Vector-state addition represents true concurrency (cf. Chapter 4) and 

enables superposition of qubit states, including combination generation using the tensor 

product. These ideas will be expressed in a formal and obvious manner in the geometric 

algebra notation. The wholistic properties (or coherence) of superposition and entanglement 

are easily upset due to noise interaction from the environment.  

 

Some sets of states can be separated or factored back to the original constituent sets. For 

example, combining qubit states {red} ⊗  {car, truck} produces the entangled set of states 

{red car, red truck} which is separable back into the sets {red} and {car, truck}. But the 

entangled set {red car, black dog} is not separable [15] because no sets of smaller dimension 
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exist that, when combined using the tensor product combination operator, can produce that 

result. Inseparable entanglement will be precisely shown later to be caused by informa tion 

erasure. Inseparable entanglement does not exist in classical computation systems because it 

represents a specialized simultaneity constraint with information erasure. This subject will be 

discussed in detail in Chapter Six on multiple qubits. 

2.3.3 Classical versus Quantum Algorithms  

Classical computation and state machines are built on the causal state-to-state transition 

model known from finite state machines (FSM). FSM implementations assume that states are 

mutually exclusive, measurable, and most use a many-to-one state-to-state mapping, making 

them irreversible. Quantum algorithms work with sets of states at one time and must only 

allow unitary or one-to-one mappings in order to be reversible [24]. All measurements 

destroy information (i.e. a projection operator) so are also not reversible. This dissertation 

shows that GA projection operators without multiplicative inverses are not reversible and 

therefore cause information erasure.  All of these new concepts will be defined and discussed 

in more detail in Chapter Three. 

 

Two major classes of quantum algorithm exist. The first class is the implementation of 

traditional classical algorithms using quantum implementations of reversible logic gates to be 

discussed later, such as Fredkin and Toffoli gates [24]. Quantum Finite State Automata 

(QFSA) also fall into this category. These algorithms may be useful for implementing 

traditional logic when the nanoelectronics scaling limit is reached; they only use classical 

states and offer no computation gain due to superposition or entanglement.  
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The second class of quantum algorithm outperforms its classical counterpart by using 

superposition and entangled states. Shor’s factoring algorithm [34] (which uses the Quantum 

Fourier Transform (QFT)) and Grover’s quantum search algorithm [14] are the primary 

known algorithms in this class. A very useful outcome of the present research would be to 

create programming tools to aid in designing both classes of algorithms. 

2.3.4 Quantum Computers  

A physical implementation of the currently largest (seven qubit) quantum computer was 

reported by the Los Alamos National Labs (LANL) in March 2000 [18], only 18 months after 

the first three qubit machine was reported (using Nuclear Magnetic Resonance (NMR) and 

customized molecules). Early in 2002, IBM announced Shor’s algorithm factored the number 

15 into factors three and five, running on a seven qubit NMR quantum computer. Nanodots 

(single 3D-confined quantum states) and nanomolecules (4-5 coupled nanodots) are the long-

term hope for quantum computers because they represent the continuation of contemporary 

semiconductor-based scaling methodology into the quantum computing domain.  

2.4 Steps in Quantum Computing 

The earlier sections of this chapter tried to show how fundamental quantum information 

principles are to the structure of the universe. Effectively, the universe is an extremely large 

quantum simulation from which classical entities emerge. This section describes the steps 

required to harness this innate ability to produce useful computation and answers. 

 

The coherence of a quantum state is easily affected by noise from the environment, so special 

care must be taken to prepare and maintain the state to be used for computation. Each 
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quantum computation follows an algorithm or recipe of operations, starting with initializing 

the qubits to known states. At the end of evolving the system state using a programmed 

sequence of operators, the final evolved state must be measured to produce the answer, 

which has the side effect of destroying the coherent information represented in the evolved 

state. This measurement process is called a projection, because the high dimensional states 

are reduced to a single classical bit vector result inside the measurement apparatus.  

 

Anywhere during this process, noise can also modify the system state, acting like an 

unwanted operator or measurement. For these reasons, redundancy of state with error 

correction techniques has been successfully applied to the evolution of quantum states. 

Designing quantum computers and algorithms is still in its infancy, but significant 

engineering progress has been made over the last ten years.  

 

Quantum theory is very strong due to its very precise mathematical models. Unfortunately, 

Manthey and I believe the overall understanding and intuition about quantum computing is 

far less mature than generally thought. It is also not very widespread due to the various 

complexities involved. The dream is to make quantum computing a natural extension of the 

knowledge, techniques, and tools used in classical computing, resulting in a much larger 

participation from the traditional engineering and programming communities. 

 

This concludes the gentle introduction to quantum computing concepts. 



 23 

CHAPTER 3  

BOOLEAN LOGIC IN QUANTUM COMPUTING 

 
This chapter introduces the ideas that information, reversible computing, non-erasure, and 

unitary transforms are equivalent concepts, due to thermodynamic principles. Rolf Landauer 

first demonstrated in the 1960s that any information erasure leads to a logical irreversibility, 

which must ultimately result in a physical irreversibility and thus ultimately impacts the 

amount of heat generated by a computation. Unitary transforms are defined as a set of one-to-

one state mappings that are reversible [24], whereas the many-to-one state mappings used by 

conventional logic OR and logic AND gates are logically irreversible, and most classical 

state machines have multiple ways of reaching a state (many-to-one) so are also not 

reversible. All these topics are very important to realizing logic via quantum mechanics.  

 

3.1 Unitary Transforms and Rotations  

The only useful operations on the quantum states of an isolated system are unitary transforms 

(expressed as unitary matrices in Hilbert space). Since unitary transforms preserve the norm 

of the inner product of quantum states, they effectively are performing rotations on those 

states.  In fact, the only unitary operation possible on quantum states is to “rotate” them. 

Rotation is inherently unitary because it uniformly transforms all states, which is equivalent 

to a one-to-one mapping, or equivalently a change in observer perspective. Since any rotation 

is unitary, it can be reversed and thus implies that none of these states are truly destroyed or 
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erased. Rotations are easily expressed using linear rotation groups [7]. Unfortunately, the 

formal mathematics for describing unitary transforms in complex-valued Hilbert spaces is 

quite involved. Therefore a formal and rigorous explanation will be provided in Chapter Four 

using the much simpler rotational formalism of geometrical algebra. 

3.2 Reversible Computing 

The concept of mapping states in a one-to-one and reversible fashion is identical to the 

unitary transforms used in quantum mechanics. This equivalence necessitates the exploration 

of a more concrete definition of reversible logic, expressed in the mathematical context of a 

linear system. Once some linear system is in place, the two well known three- input reversible 

gates, Fredkin and Toffoli, can be expressed. Note that some one-to-one transforms erase 

information and are thus irreversible. 

 

Again, the usual mathematics of complex Hilbert spaces is too complex to make this simple 

point regarding the relationship between reversible Boolean logic and linear systems. 

Therefore, the remainder of this chapter covers the main concepts of reversible logic and 

quantum gates without relying on Hilbert space mathematics. In order to demonstrate how 

linear systems must adapt to encompass logic operations (both reversible and irreversible), 

real vector linear algebras called Galois Fields (GF) will be introduced and used to express 

Boolean logic operators.  The forms of these Galois Field expressions are similar to those 

developed later in geometric algebra and constitute an introduction to the key issues. 
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3.3 Universal Logic and Quantum Gates 

A set of operators is “universal” or “Boolean complete” if any Boolean logic function can be 

represented using combinations of only those operators. The traditional two-input NAND 

logic gate (with one output) is universal even though it is not reversible. Likewise the two-

input NOR gate is also universal, but its near-cousin the eXclusive-OR (XOR) gate is not 

universal by itself. Logic inclusive OR and logic AND gates are also Boolean incomplete by 

themselves unless inversion is available using logic NOT or logic XOR gates.  

 

Table 3.1: Some important logic operators 

NAND false true  NOR false true  XOR false true 
false true true  false true false  false false true 
true true false  true false false  true true false 
Is Boolean Complete  Is Boolean Complete  Not Boolean Complete 

 
 

A universal one- input gate clearly does not exist, and likewise no two-input gates exist that 

are both universal and reversible. A minimum of three inputs and three outputs are required 

to define a classical universal reversible gate, cf. Section 3.4. 

 

The rules regarding universality and reversibility change for quantum gates because all 

quantum systems are unitary and thus are inherently reversible. The cha llenge is to use this 

kind of system to produce classical Boolean logic and other useful computation. The smallest 

quantum system is a single qubit containing two interlocked orthogonal state vectors. This 

quantum phase gate is q-universal [1] because it can place the qubit in an arbitrary phase 

state. The Hadamard gate is equivalent to a phase gate with a preset 90° angle. Consequently 
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the Hadamard gate is not q-universal. Hadamard gates switch qubits back and forth between 

classical and superposition phases. A single qubit cannot represent any classical Boolean 

logic operation except inversion. 

 

For systems with two qubits, conditional operators can be defined where, when the control 

qubit is “True”, the operation on the other data qubit is conditionally performed, else nothing 

happens. The naming convention for conditional gates is control-<operation_name>, where 

the most common is the control-not gate. The control-not gate conditionally inverts the data 

qubit when the control qubit is “True,” and so is equivalent to an asymmetric XOR logic 

operator. If the control is not in a classical state, the data bit is placed into a superposition 

state. The control-not gate is not logic universal. Similarly, the phase gate equivalent for two 

qubits is called the control-phase gate, which is q-universal for setting any quantum state. 

The control-V [10] gate is equivalent to a conditional control-Hadamard gate and is not logic 

universal. No two-qubit system (or logic operator) is Boolean complete, even though the 

two-input classical NAND and NOR gates are universal. 

 

3.4 Toffoli and Fredkin Reversible Gates 

The first Boolean complete classical logic operators arise using three classical bits or three 

qubits. The reversible Toffoli and Fredkin gates are the only two universal classical logic 

gates possible [24] and require three inputs and three outputs. Table 3.2 shows the logic 

tables for Fredkin and Toffoli gates with classical inputs {a, b, c) and outputs {A, B, C}.  
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Table 3.2: Logic Tables for Fredkin and Toffoli Gates 

c b a C B A  c b a C B A 
0 0 0 0 0 0  0 0 0 0 0 0 
0 0 1 0 1 0  0 0 1 0 0 1 
0 1 0 0 0 1  0 1 0 0 1 0 
0 1 1 0 1 1  0 1 1 0 1 1 
1 0 0 1 0 0  1 0 0 1 0 0 
1 0 1 1 0 1  1 0 1 1 0 1 
1 1 0 1 1 0  1 1 0 1 1 1 
1 1 1 1 1 1  1 1 1 1 1 0 

Fredkin Gate c=control  Toffoli Gate c=b=control 
 
 

The Toffoli Gate is called a control-control-not gate, where the two control inputs must both 

be “True” to conditionally invert the third data qubit. The input values nevertheless pass 

through to the outputs so nothing is ultimately erased. Other useful gates, defined as the 

control-control-phase and control-control-Hadamard, are also possible and will be defined 

later using geometric algebra. Thus, control gates can be defined with any number of inputs. 

 

The Fredkin gate is similar to a small two-pole relay with a single control line and two data 

lines, which is functionally equivalent to a 2x2 crossbar switch. If the control line is “True,” 

the switch is in the “bar” state and the data values just pass thru. If the control line is “False,” 

the switch is in the “cross” state and the data values are routed to the opposite data output. 

All input values pass thru to an output, so this gate conserves the number of 0s and 1s 

between input and output pins. Using ballistic computing ideas where a logic “True” value is 

represented by the presence of a ball, the Fredkin gate is thermodynamically the most passive 

reversible gate since no balls need be created or destroyed. Assuming a steady supply of 

spare balls (source) as needed then destroying a ball (sink) is the same as erasing 

information. 
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The Toffoli and Fredkin operators are important because they link universal classical logic to 

unitary systems, and as well, demonstrate reversibility in classical computing systems. These 

bridge operators will be used in Section 3.5 below to illustrate how Boolean logic operators 

cannot be directly represented in linear systems composed exclusively from the input vector 

set. This concept is necessary in order to explain why unitary quantum computation requires 

inflated linear spaces (using the tensor product) to represent reversible logic operators. 

3.5 Boolean Logic and Operators Using Linear Mathematics 

Much of physics models can be expressed using simultaneous linear equations traditionally 

represented as matrices. Therefore, the first step in integrating computation and physics 

requires expressing Boolean logic functions as operators in a system of linear mathematics. 

This approach permits the same robust mathematical techniques from physics to be applied 

to computational science. Since any linear algebraic system that is Boolean complete should 

work, the relatively simple linear algebraic system called Galois Fields [30] is chosen, which 

is classical logic universal. This approach produces the unexpected result that Boolean logic 

operators can only be expressed when embedded into an expanded linear space.  

3.5.1 Boolean Logic in Galois Fields  

Galois Fields are finite fields that can be extended to any size GF(n) but we use only the one-

bit fields, i.e. GF(2). Table 3.3 defines the multiplication and modulo 2 addition operators for 

inputs {a, b} in GF(2) and their respective equivalence to logic AND and logic XOR. The 

standard input values {1, 0} correspond to the logic meanings {True, False}. 
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Table 3.3: Karnaugh Maps of Intrinsic Logic Operators in GF(2) 

Multiply b = 0 b = 1 Add b = 0 b = 1 

a = 0 0 0 a = 0 0 1 

a = 1 0 1 a = 1 1 0 

a * b è a AND b 

 

a + b è a XOR b 
 
 

Table 3.4 illustrates that GF(2) is Boolean complete since it intrinsically contains the logic 

AND operator and the inversion operator via logic XOR. Therefore any Boolean logic 

function can be written as a linear equation in GF(2) and simultaneous equations can be 

expressed as matrices. 

 

Table 3.4: GF(2) is Boolean Complete 

Boolean Logic Notation for {a, b} 
Operator Symbol using GF(2) 
Identity a a a * 1 = a + 0 
NOT a ! a a + 1 

a AND b ba ∧  a * b = a b 
a XOR b a b⊗  a + b 
a OR b ba ∨  a + b + a b 

 
 

This derivation is straightforward and can be expanded to any number of input states, but the 

two highlighted points warrant further comment. First, the NOT operator is implemented 

with XOR by adding a constant value of “1.” Second, the size of the OR expressions are 

longer in this algebra, since GF(2) intrinsically provides only logic XOR and logic AND.  

Subsection 3.5.2 demonstrates that logic OR gates for n inputs require 2n–1 terms in GF(2). 



 30 

3.5.2 XOR Dominated Logic 

Logic AND operations can be expressed compactly using GF(2)’s intrinsic multiply operator. 

Conversely, the logic OR operator is not intrinsic and must rely on XOR, which is the mutual 

exclusion operator. Since XOR logic is unintuitive, some useful design insight will be 

presented. Traditional logic designers use Karnaugh maps to help define logic equations by 

circling groups of quadrants and writing down the linearly independent expression using 

logic inclusive OR, sometimes writing + to signify the logic OR (symbol ∨ ). This approach 

also works for Karnaugh maps using GF(2) only if the coverage terms are non-overlapping 

or odd. The Karnaugh maps and equations in Figure 3.1 depict this idea for logic OR. 

 

   (a * !b) + b  
= (a*(b+1))+b 
= a b + a + b  
= a OR b 

 

Figure 3.1: Karnaugh Maps of Logic OR using XOR logic 

 

The linear independence difference between inclusive and exclusive OR is simply that XOR 

is odd parity: where each square in an XOR oriented Karnaugh map covered by an odd 

number of terms produces a value of 1. By definition, disjoint sets produce an odd number of 

covered squares for XOR logic and an even number of covered squares always produces a 

value of 0. Because of the symmetry of XOR, expressed as (1 + vector), the final number of 

terms in sum-of-products form grows large. A similar result will occur later in geometric 

algebra. 
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Table 3.5: Logic Inclusive OR for {2, 3, 4} input states in GF(2) 

Input logic equation Sum of all combinations in GF(2) Number of terms 
a OR b a + b + a b     2 + 1 = 3 = 22-1 
a OR b OR c a + b + c + a b + a c + b c + a b c 3 + 3 + 1 = 7 
a OR b OR c OR d a + b + c + d +  

+ a b + a c + a d + b c + b d + c d 
+ a b c + a b d + a c d + b c d 
+ a b c d 

4 + 6 + 4 + 1 = 15 

 
 

Applying this same approach for n inputs shows that inclusive OR in GF(2) requires every 

product combination of n inputs, or 2n–1 terms (which is an odd number). Table 3.5 

illustrates the logic OR expressions for n ∈ {2, 3, 4} input states. 

 

This result is significant for two reasons. First, since GF(2) is logic AND predominant, logic 

OR expressions require an exponential number of terms due to the influence of XOR. Second 

and more importantly, each product term used to define an operator in a GF(2) sum is 

linearly independent of all other terms. This directly implies that, given a matrix for 

orthogonal basis states {a, b}, then the basis set must be inflated (adding columns/rows) for 

each product term {a b} in order to express Boolean logic operators in the linear matrix form. 

The next subsection demonstrates this result using the Fredkin and Toffoli gates. 

3.5.3 Toffoli and Fredkin Gates in GF(2)  

The universal reversible Fredkin gate has three inputs [c b a] and three outputs [C B A]. The 

three inputs form a basis vector set using the values {1, 0}. The Fredkin linear operator is a 

function F dependent on control “c” that satisfies equation [ ] [ ]* ( )C B A c b a F c= . 

The summary of this result is shown in Table 3.6. See Appendix A for the full derivation of 

this GF(2) result. 
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Table 3.6: Fredkin Gate as Matrix Operator in GF(2) 

1cF = =  Identity 0cF = =  Swap 0 1( )F c F F= +  Fredkin Matrix  [C B A] = 

1 0 0

0 1 0
0 0 1

 
 
 
    

1 0 0

0 0 1
0 1 0

 
 
 
    

1 0 0

0 !
0 !

c c
c c

 
 
 
    

[ ]

1 0 0
0 0 1

* 0 1 0

0
0

c b a

 
 
 
 
 
 
  

1 1
1 1

bc ac

 
A = a , B = b , C = c  A = b , B = a , C = c  A =  b + b c + a c,   B =  a + b c + a c,  C = c  

 
 

As expected, the Fredkin gate can be expressed as simultaneous equations in universal GF(2) 

where A = b + b c + a c,   B = a + b c + a c, and C always equals c. The unexpected result is 

the conditional matrix representation of F(c) can only be described in a larger linear vector 

space, inflated by the product of the control signal with each data line (see the bold text in 

table). Similarly, as Table 3.7 illustrates, the Toffoli gate with controls c and b should also be 

expressible as a matrix in GF(2) of the form [ ] [ ]* ( , )C B A c b a T c b= . However the 

vector space must again be inflated to express this operator. 

 

Table 3.7: Toffoli Gate as Matrix Operator in GF(2) 

c b a C B A Observable? Toffoli Matrix [C B A] = 
0 0 0 0 0 0 same 
0 0 1 0 1 0 same 
0 1 0 0 0 1 same 
0 1 1 0 1 1 same 
1 0 0 1 0 0 same 
1 0 1 1 0 1 same 

[ ]

1 0 0
0 1 0

*
0 0 1
0 0

c b a

 
 
 
 
 
 1

b c  

1 1 0 1 1 1 visible 
1 1 1 1 1 0 visible 

A =  a + b c, B = b, C = c 
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3.5.4 Boolean Logic is formally non-linear 

Based on universality and reversibility requirements in the context of finite linear systems, it 

is clear that conditional logic operators such as F(c) and T(c, b) can not be expressed solely 

in the linear space defined only by the input state space of {a, b, c}. The size of the linear 

space must be inflated by all the conditional terms, expressed as products, required to 

represent the logic operators in a linear algebra such as GF(2). Once expressed in this 

expanded linear matrix format, the entire system defined by both the state and the operators 

is subject to full matrix techniques. Full reversibility is possible if all input and output states 

are maintained (i.e. square matrices) and no information is gratuitously erased. 

 

The independent choice of including the product term (a b) inside some function f (a, b) is 

solely dependent on its desired behavior (compare the behaviors of a + b versus a + b + a b) 

and independent of the values of either a or b. Therefore, a closed linear space which is to be 

capable of representing both the functional operators and their state must be inflated by all 

the products used by the functional behaviors. This is very important since the states and 

operators of many algebras are the same elements (cf. they are group elements), and the 

ability to distinguish between them is based on their use. 

 

The size of the inflated linear space depends on both the number of input vectors and the 

complexity of the operations performed. The reason logic OR creates the maximum space 

inflation is that its output is reached from almost any combination of input states, which 

represents a many-to-one mapping. The reversible linear space must therefore be big enough 

to hold and reverse the state changes made by operators that perform logic OR. 



 34 

In conclusion, any reversible linear system is Boolean complete when it reaches a certain 

minimum size. To represent both the states and the operators of arbitrary Boolean functions, 

the size of the closed linear system must be further expanded. The overall size of the closed 

reversible linear system is dependent on the amount of state plus the overall complexity of 

the operations performed, but is bounded by 2n elements. 
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CHAPTER 4   

GEOMETRIC ALGEBRA FOUNDATIONS 

 

4.1 Matrix versus Algebraic Notation 

This chapter summarizes the principles of geometric algebra (GA) required for this 

dissertation. A significant body of GA development has occurred, notably at Arizona State 

University and the University of Cambridge. GA unifies much of the existing mathematics in 

the specialized areas of vector algebra, quaternions, spinor algebra, matrix, and tensor 

algebra into a topologically based framework pioneered by William Clifford (1845-1879), 

who united the inner product with Grassmann’s outer product. David Hestenes of ASU 

resurrected GA into the modern era. 

 

Most of modern physics is based on vector and matrix algebra, plus the proliferation of other 

novel algebraic systems listed above that were created as they were needed. These 

specialized systems are naturally included as part of the topological approach to geometric 

algebra, including such broad application areas as mechanics, quantum mechanics, and 

general relativity. GA accomplishes this by using a high-dimensional algebraic notation that 

relies on neither complex numbers nor matrix notation.  

 

As will be shown, GA’s use of high-dimensional algebraic notation is particularly useful for 

efforts in quantum computing, because computer engineers and scientists have different skills 



 36 

from physicists and mathematicians, thus making cross-disciplinary efforts in quantum 

computing difficult. Relying on real-valued, mixed-rank, algebraic notation, geometric 

algebra removes this difficulty and serves as a unifying mathematical language. As a result, 

GA makes quantum computing more understandable and palatable to engineers, and 

therefore it is more accessible to a broader group of researchers and developers. 

4.2 Co-Occurrence and Co-Exclusion 

Before introducing GA principles, it is important to introduce Manthey’s [23] framework for 

the meaning of addition and multiplication operators. My research relies heavily on 

Manthey’s interpretation and so it is introduced early in the discussion. I was originally 

attracted to his framework because of the allure of a mathematical formalism based on only 

addition and multiplication that bootstraps respectively spatial and temporal concepts for 

logic. I found much more by adopting his approach and interpretation, which works naturally 

with the highly symmetric geometric algebra. Manthey’s conceptual primitives are Co-

Occurrence and Co-Exclusion.  

 

An important premise of Manthey’s work is that a simple state and its additive inverse 

exclude each other (written as ↔a a ), which defines the mutually exclusive states of a 

classical bit. Simple states are binary, where +a = a = “ON” and ( )−a = a =  “NOT ON” and 

denoted by simple vectors a, b, c, etc. that are herein generally considered to be orthonormal. 

These two states are classical and their exclusion is expressed as + = 0a a . Exclusion is the 

constraint that two given states of a vector CANNOT logically or meaningfully said to occur 

at the same instant in time. 
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Co-occurrence is defined as two or more states “occurring” simultaneously and is expressed 

as the sum of these states. For states a, b, c, etc. (which will later be taken to be vector 

elements of GA), if state a and state b can occur at exactly the same instant in time (assuming 

Einstein locality), the relationship is denoted as ± ±a b  or ± ±b a , in that commutative 

properties of addition reflects the lack of temporal ordering characteristic of simultaneity. 

Since subtraction is not commutative, always interpret − −a b  as +a b . The interpretation of 

simultaneous states as co-occurring is used heavily in this research to give consistent and 

insightful meaning when combining multiple states using addition. 

 

Co-exclusion requires two co-occurrences (wherein each component of the constituent co-

occurrences can change independently) that exclude each other. Initially the state of the co-

occurrence is say (a + b) and later the state is observed as ( +a b ). Since this later state is the 

complement of the earlier one, this transition implies that some operator interacted (using 

multiplication) with the system. The existence of such an operator implicitly invokes a 

hierarchical abstraction: two 1-bit-of-state processes (a and b) have been treated (by this 

operator) as one process with two bits of state. This operator can be determined, and in fact is 

expressed in geometric algebra as the product (a b).  For states a, b, c, etc the co-exclusion 

can be denoted in either of the following two ways: 

( ) ( )↔ +b + c b c   or  ( ) | ( )+b + c b c                                         (4.1) 

Since co-exclusion infers an operator for change and implies temporal sequence, it is 

considered to be the temporal primitive. Conversely, co-occurrence is labeled the spatial 

primitive since it is static. Also, according to Einstein and Feynman, if anything is conserved 

it must be conserved locally, so token synchronization/conservation can only occur locally.  
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Mutual exclusion (or mutex), which controls execution or access order for shared 

computational resources, is historically the motivation for synchronization tokens. So 

Manthey’s synchronization-based concepts of co-occurrence, exclusion and co-exclusion 

form the foundation for the computational interpretation of GA used in this dissertation. No 

other temporal or causal ideas are defined or implied for GA addition and multiplication. See 

Figure 4.1 for a graphical summary of these relationships. 

 

 

Figure 4.1: Co-occurrence and Co-exclusion Concepts 

 

According to Manthey, a Turing machine cannot express the notion of true simultaneity since 

no co-occurrence primitive exists for it. His coin demonstration shown below illustrates this 

point about true simultaneity by relying on the premise that the coins are formally identical 

tokens, which are indistinguishable in every respect (cf. synchronization tokens). You could 

also use electrons or photons as tokens if you prefer. 
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The Coin Demonstration [23]: 

Act I: A man stands in front of you with both hands behind his back.  He shows you 

one hand containing a coin and then returns the hand and coin behind his back. After 

a brief pause, he again shows you the same hand with what appears to be an identical 

coin. He again hides it and asks, “How many coins do I have?” 

The best answer at this point is “at least one,” which represents one bit of information with 

two possible states, state1 = “one coin” or state2 = “more than one coin.” 

Act II: The man now extends the same hand and it contains two identical coins. 

We now know that there are two coins, that is, we have received one bit of information, in 

that the ambiguity is resolved. We have now arrived at the final step in this demonstration. 

Act III: The man now asks, “Where did that bit of information come from??” 

 

This bit originates in the simultaneous presence of the two coins. Thus true concurrency 

cannot be simulated with a sequential Turing machine no matter how fast the individual 

tokens are sequentially presented. Likewise, even though modern general-purpose computers 

are Turing equivalent, the missing atomic “test and set” locking primitive must usually be 

added to the architecture in order to support the mutual exclusion synchronization tokens 

needed by the operating systems.  Manthey argues that computing only with tokens is 

equivalent to quantum mechanics and he pioneered the use of discrete GA applied to 

quantum mechanics used in this dissertation. Addition is used to express the simultaneity of 

co-occurrence while multiplication is the mechanism for state change operators. Co-

exclusion implies an operator must interact with the system state to allow a new state to 

emerge.  
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Distinct labels for “states” and “operators” become blurred when working with the 

mathematical elements defined by GA because both uses are merely conventions applied to 

the same expressions in the algebra. Also, these states are NOT assumed to be classical. 

Multiplication just means expressions in the algebra (states and operators) interact in a self-

consistent manner without any notion of classical time or causality. According to Manthey, a 

simple state s and its inverse [= not s] cannot logically occur at the same instant in time. This 

is true for both individual simple states and complex sums of states. This postulate is 

expressed in equation (4.2) as a co-occurrence expression that sums to zero, and thus reserves 

the special meaning of “cannot occur” for 0. 

+ = ( ) = 0−a a a + a    or   ( + ) +( + ) = 0b c b c                               (4.2) 

This interpretation means that the traditional mathematical technique of equating an 

expression to zero and solving for the roots has a different meaning because the solutions 

found cannot occur and actually represent the non-solutions. This idea will acquire more 

meaning later when we look at destructive interference for sets of quantum states. 

4.3 Geometric Algebra Principles  

Geometric algebra is considered by many to be a universal, topologically-based, 

mathematical language for mathematics, physics, and engineering, [21] because GA’s real-

valued geometric product (consisting of the sum of inner and outer products) replaces 

complex numbers. The original approach behind GA was developed by William Clifford in 

1878 and has these benefits: 

1) scales to arbitrary number of dimensions (i.e. scalars, vectors, bivectors, trivectors, etc) 

2) unit imaginary is replaced by topologically derived pseudoscalar or n-vector 
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3) geometric product is invertible, which is the multiplicative inverse denoted as 1/A=A-1 

4) encompasses anticommutative multiplication, quaternions, Pauli and Dirac spins, etc 

5) generalized rotors work for both quantum mechanics and dilation in relativity. 

 
The remainder of this section includes the basic definitions of geometric algebra, organized 

by the grade (or arity) of the elements. These elements form a finite algebra that is closed 

under addition, subtraction, multiplication and inversion, but not division (so is not a division 

algebra). Other books [16] carefully derive the properties of geometric algebra, so this 

section introduces only the concepts and rules used elsewhere in this dissertation. 

4.3.1 Scalars and Vectors  

Scalars and vectors have the familiar definitions from general mathematics. Scalars are just a 

real valued magnitude without any orientation or direction. A vector adds the notion of 

orientation where the sign is significant. The notation convention used here is to denote 

scalars (only real values –1, 0, and +1) in normal font Greek characters { , , , ,...α β λ µ }, bold 

vector names usually start in lower case alphabetic characters {a, a1, b, c, d, e, …} and 

bivectors in bold uppercase alphabetic characters {A, B}. Normal associative, distributive, 

and vector addition rules apply.  

 

The addition of vectors (a + b) forms a new vector by placing the tail of b to the head of a. 

Any set of n linearly independent vectors forms a basis set for a space of dimension n. 

Multiplying a scalar times a vector represents dilation of the vector length and also allows 

direction inversion. Scalars are defined as grade-0 (denoted as 0A〈 〉 ) and vectors as grade-1 

(denoted as 1A〈 〉 ). Scalars and vectors (and higher-grade terms) can be added together to 
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form a mixed grade multivector ( 0 1 ... nA A A A= 〈 〉 + 〈 〉 + + 〈 〉 ), which is conceptually similar to 

representing complex numbers as the sum of the real and imaginary parts.  

4.3.2 Bivectors and Anticommutative Multiplication 

Geometric algebra is novel because the outer product ( )∧  is formed by multiplying two 

vectors together to create a grade-2 bivector.  A bivector represents the parallelogram defined 

by two vectors with its orientation defined by the right hand rule. This also applies for 

oriented volumes (trivector) and higher dimensional n-volumes (n-vectors). The diagram in  

Figure 4.2 portrays the topological basis for the anticommutative property of ∧ − ∧a b = b a. 

 

 

 

∧ − ∧a b = b a  

Figure 4.2: Bivector Defines an Oriented Area (via right hand rule) 

 

Clifford developed the mechanism of maintaining orientation in geometric algebra by 

discovering that a geometric product is the sum of the inner and outer products. The 

geometric product can be generalized to any number of dimensions because the inner product 

is a grade reducing operation and the outer product is a grade increasing operation. The 

following equations define the geometric product for unit length vectors {a, b} with the 

angle between them θ : 

a 

b b 

a 



 43 

   = − = + ∧a b ba a b a bi   geometric product is inner (dot) plus outer (wedge) products   (4.3) 

   cosθ=a bi       inner product scalar is maximal when unit vectors a and b are collinear  (4.4) 

   sini θ∧ =a b   outer product bivector is max when a and b are perpendicular; 1i = −  (4.5) 

 

Likewise, once the geometric product is defined, the inner and outer products can be 

rewritten as the symmetric and anti-symmetric sum (or difference) as in eqns (4.6) and (4.7). 

 

1
2

= =a b b a (a b + b a )i i  symmetric sum forms the scalar inner product                           (4.6) 

1
2

∧ = − ∧ = −a b b a (ab ba)  anti-symmetric difference forms the bivector outer product  (4.7) 

 

Precedence rules exist for inner, outer, and geometric products when parentheses are omitted. 

Inner and outer products should always be performed before an adjacent geometric product. 

Likewise, outer products have precedence over inner products. 

 

Most uses of geometric (or Clifford) algebra Gn use its vector properties for expressing 

relationships within a predefined n ∈ {2, 3, or 4} dimensional space of arbitrary extent, 

where the basis vectors formally defining the space are important but not the primary 

concern. The present research focuses primarily on the definition and formal properties of 

discrete high-dimensional spaces generated by orthonormal (i.e. unit length and mutually 

perpendicular) vectors. For the basis vectors, the inner product is always zero. Under these 
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conditions, the geometric and outer products are identical ( )= ∧a b a b  so the wedge 

character is sometimes dropped, when no confusion is possible. 

 

The following properties1 exist for a plane defined by orthonormal basis vectors span{a, b}.  

 

a2 = b2 = 1  (since self collinear) and remember 0=a bi                    (4.8) 

 

Due to the geometric product, this basis set can also generate the bivector ∧ =a b a b , whose 

orientation is orthogonal to both vectors a and b (and equivalent to cross product in 3D).  

Including the scalars {0, 1}± , this forms the geometric algebra G2 which is closed over 

addition and multiplication and forms a four-dimensional finite algebra. G2 defines the 

graded elements 0 1 2{ , , }A A A〈 〉 〈 〉 〈 〉 : the scalars 0 {0, 1}A〈 〉 = ± , two vectors 1 { , }A〈 〉 = a b  and 

one bivector 2 { }A〈 〉 = a b . The two vectors form the odd grade set 1A A+〈 〉 = 〈 〉 , whereas the 

even grade includes the scalar and bivector elements 0 2A A A−〈 〉 = 〈 〉 + 〈 〉 , resulting in the set 

of all possible multivectors of the form 0 1 2A A A A A A+ −= 〈 〉 + 〈 〉 = 〈 〉 + 〈 〉 + 〈 〉 . 

 

The highest-grade element in this group is called the pseudoscalar (denoted as I) and for 

some grades its square is equal to –1 (see eqn 4.9). This pseudoscalar has geometric roots, is 

defined for arbitrary grade Gn and for G2-3 has the properties of the unit imaginary (i 2 = –1).  

2I  = (a b)2 = a b a b = – a a b b =  – (a)2 (b)2 = –1                          (4.9) 

                                                 

1 Actually in GA 2 1= ±a  but the signature for this dissertation is Sig = (n,0) 
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The order of multiplication is significant because of GA’s anticommutative properties. 

Multiplying a vector times a bivector can be performed from the left or right sides. Left 

multiplication rotates a vector 90° clockwise in the bivector plane and right multiplication 

(used in this paper) rotates a vector 90° counterclockwise. Due to this property, any bivector 

is called a spinor. Here are two right multiplication examples. 

a I = a (a b) = (a a) b = b   similarly   b I = b (a b) = – a b b = – a (b b) = – a       (4.10) 

 

Figure 4.3 Spinor Plane 

 

4.3.3 N-vectors and Mixed Rank Expressions  

The definitions in section 4.3.2 can be expanded for larger basis sets. For the orthonormal 

basis set containing n basis vectors {a, b, c, d, …}, the same methodology applies. The n 

orthonormal vectors generate the geometric algebra of Gn where the elements in the algebra 

are the scalars 0A〈 〉 , the vectors 1A〈 〉 , all unique vector product pairs of bivectors 2A〈 〉 , all 

unique vector product trios of trivectors 3A〈 〉 , etc. until the unique n-vector pseudoscalar 

nA〈 〉  is reached. For any Gn the pseudoscalar I is always of grade n.  The sum of any 
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combination of the n-vectors 0 1 ... nA A A A= 〈 〉 + 〈 〉 + + 〈 〉  is a valid member of Gn and is 

identified as a multivector.  

 

The geometric product of a vector with a higher grade n-vector works for Gn, as illustrated 

using a vector a, a bivector B and arbitrary grade n-vectors Aj and Bk, but a general product 

of j kA B  does not generally equal j k j k∧A B + A Bi  unless one of the factors is a vector. 

Table 4.1: Product Summary  

∧a B = a B + a Bi  k k k∧aB = a B +a Bi  j k j k j k∧≠A B A B + A Bi   

a Bi  is a 1-vector 1k k k -
=a B aBi  j k j k j-k

=A B A Bi  

∧a B is a 3-vector 1k k k+
∧ =a B aB  j k j k j+k

∧ =A B A B  

 
 

In general ...j k j k j k j kj+k j+k-2 j-k
= + + +A B A B A B A B , where the inner and outer 

product is reserved for smallest and largest grade elements. For arbitrary bivectors A and B, 

the expression 
1

( )
2

∧ = −A B AB BA  is the commutator because it vanishes if A and B 

commute.  

 

For n-vector A = a0 a1 … an, the reverse A%  is the vectors listed in reverse order an … a1 a0 

and this is the same as Hermitian adjoint A A% = † . Reversion flips the sign of bivectors and 

trivectors. Reversion does not affect scalars, vectors, or 4-vectors, which means they are self-

adjoint or A A A%= = † . In general, the reverse of each grade is independent: †
ii

A A= 〈 〉∑% . 
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4.3.4 Number of Elements in a Geometric Algebra 

The total number of unique graded elements in any Gn is N = 2n. The number of elements of 

each grade can be quickly found by using Pascal’s triangle shown in Figure 4.4 because each 

row n is a binomial expansion that sums to N. Each entry is the sum of the two numbers 

above it C(n, m) = C(n–1, m–1) + C(n–1, m) in the triangle, and also represents the number 

of unique ways for n tokens taken m at a time n
m

 
 
 

.  Since the sum is a power of 2 (and 

contains only factors of 2 then N has only even factors. 
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Figure 4.4: First seven rows of Pascal’s Triangle  

 

For a vector space of size n the first slanted column (left side of triangle) represents the 

scalars 0A〈 〉 . The second column is the number of vectors in set 1A〈 〉 (in bold and =n), 

followed by the number of bivectors in set 2A〈 〉 , etc for each mA〈 〉  until the pseudoscalar 

nA〈 〉  is reached. The total number of elements in an algebra Gn defined by n vectors grows 

exponentially. This very large state space will be shown to be identical to the linear state 
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space requirements for quantum mechanics and matches the Boolean decode developed in 

the Section 4.4. 

4.3.5 Quaternions in Geometric Algebra 

Quaternions were invented by William Hamilton to solve the problem of arbitrary rotations 

in 3D Euclidean space 3E  defined by orthonormal vectors { 1σ , 2σ , 3σ } (using the GA 

vector convention of bold font to distinguish from the Pauli matrices introduced later). 

The set of n-vectors generated from the basis of 3E  forms the geometric algebra 3G . The 

odd-grade elements 3
−G 1 2 3 1 2 3{ }= σ , σ , σ , σ σ σ  consist of the original three 1-vectors and the 

trivector (or pseudoscalar I ) while the scalar and three bivectors (or spinors) constitute the 

even-grade elements 3
+G 1 2 1 3 2 3{ 1 }= ± , σ σ , σ σ , σ σ . Thus 3G  can be defined as 3

−G  + 3
+G . 

The elements of 3
+G  define a linear space of four dimensions that is a finite algebra closed 

under multiplication and addition. This subset is called the even subalgebra of 3G . In 3G  

and 3
+G  a bivector times a bivector always returns either another bivector or a value of –1. 

 

The even spinor subalgebra 3
+G  is isomorphic to Hamilton’s quaternion algebra { }i , j ,k , 

where = = = = 1,−2 2 2i j k  ijk  i j=k ,  j k = i  and k i = j . In reality { }i , j ,k  are bivectors  

(where 1 2= σ σ ,i  3 1= σ σj , and 2 3= σ σk ) with their usual anticommutative properties. 

Alternatively, the bivectors can be written as a product of the pseudoscalar and a vector 

where 3i = σ ,Ι  2j = σΙ , and 1k = σΙ . The only difference between the quaternions and 

the GA work presented here, is that by convention, every vector and expression in GA would 

be placed in a standard sort order by applying the right hand rule uniformly, resulting in the 
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opposite sign for term 1 3= =− σ σj' j  and consequently = −ij' k, = −j'k i  and ik = j . That 

quaternions are equivalent to the even subalgebra of 3G  is why four dimensions are required 

when dealing with three spatial dimensions.  

 

The last topic regarding the even subalgebra is the choice of bivectors as the primary basis 

for 3E . In a three-dimensional space 3E , the three basis vectors {x, y, z} also define three 

orthogonal planes. Each one of the bivectors defining these planes has an orientation that 

points into the unit box and is the mathematical basis of Gibbs’s vector cross product (only 

works in three dimensions and see [16] for details). These bivectors geometrically constitute 

a dual for each basis vector (x ~ y z, y ~ –x z, and z ~ x y) as shown in Figure 4.5. This is 

topologically why quaternions can represent 3E  using only bivectors. 

 

Figure 4.5: Quaternions as Bivectors in three dimensions 
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Another more pragmatic reason for choosing bivectors over vectors deals with the 

anticommutative properties of vectors versus bivectors. For orthonormal vectors a, b, and c 

with the bivector B = b c, the following facts are true.   

a b = – b a, vector geometric product is anticommutative but           (4.11) 

a B = a (b c) = – b a c = + b c a = B a    (bivectors commute)          (4.12) 

The choice of a bivector basis allows the writing of terms in geometric product expressions 

in any order without needing to keep track of the inversions, which is very useful during 

blind algebraic substitutions. Substitutions must be used exceedingly cautiously because, for 

example, equation 4.12 only works if the dimensions do not intersect or = 0a Bi . 

4.3.6 Inner Product Definition 

Many of the examples illustrated so far describe the algebraic details of computing the 

geometric product. The algebraic rules for computing the inner product are not much more 

difficult, but the literature descriptions seem complex and confusing. The only cases 

introduced so far is the inner product of two orthonormal vectors 2G  = span{a, b}, such that 

= 0a bi  means orthogonal and = =1a a b bi i  means self collinear and of unit length. The 

next paragraphs describe the other cases of inner products between n-vectors, assuming the 

restriction that the vectors {a, b} in 2G  are orthonormal. 

 

The definition of the inner product x Yi  for vector x and bivector = ( )∧Y y z  is: 

= = ( ) = ( ) ( )∧ ∧ − ∧x Y Y x x y z x y z      x z yi i i i i                             (4.13) 
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where x, y, and z are place holder variables for actual vector names. Notice that for 2G  only 

two actual vectors exist, so if = ( )∧Y a b  then the result is ( ) = ( ) ( )∧ ∧ − ∧x a b x a b    x b ai i i  

with either =x a  or =x b . This means only one of the terms of the sum is non-zero since 

either =1a ai  and = 0a bi  or = 0b ai  and =1b bi . Knowing this important inner product 

simplification for orthonormal vectors is very useful as the grade of the n-vector increases.  

 

The inner product w Zi  of vector w and n-vectors ( )∧Y = y z  and ( )∧Z = x Y  is defined as: 

= = ( ) = ( ) ( )∧ ∧ − ∧w Z Z w w x Y w x Y   x w Yi i i i i                            (4.14)        

where w, x, y, and z are again place holder variables for actual vector names. This result 

depends recursively on the previous bivector inner product so the substitutions can continue. 

= ( ) (( ) ( ) ))
= ( ) ( ) ( )

∧ − ∧ ∧ − ∧
∧ ∧ − ∧ ∧ ∧ ∧

w Z w x Y   x w y z      w z y
w x y  z     w y x z   +   w z x y 

i i i i
i i i

                 (4.15) 

This result has a very specific pattern (minus sign is due to moving the chosen vector to the 

beginning of the n-vector) where the initial vector w forms a dot product with each vector in 

the n-vector, but only one dot product will be non-zero. Again by using actual vectors for 

3G = span{a, b, c} only three vectors exist, so with x = a, y = b, and z = c then the result is: 

= ( ) ( ) ( )∧ ∧ − ∧ ∧ ∧ ∧w Z w a b  c     w b a c   +   w c a b i i i i                   (4.16)  

with either w=a, w=b, or w=c. This again means only one term in the sum will be non-zero 

and the same procedure can be applied to an n-vector Z of any grade. The literature always 

writes this expansion as a large sum, but for orthogonal vectors, only one term where 

( ) = 1w xi  will remain, which occurs if and only if =w x . If vector w is not one of the 

dimensions contained in n-vector Z then = 0w Zi , which is also true if “w” is a scalar. 
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The next step shows how to compute the inner product of an m-vector, say = ( )∧X v w , and 

an n-vector say = ( )∧ ∧Y x y z  where v, w, x, y, and z are vector place holders and m < n.  

= = ( ) ( ) = ( ( ( )))∧ ∧ ∧ ∧ ∧X Y Y X u w x y z u w x y zi i i i i                      (4.17) 

This result simply reduces the grade of Y for each common dimension from the right end of 

X (while dealing with signs from anticommutative swaps in Y), else is = 0X Yi  for vectors 

in X not found in Y. The only remaining step is to illustrate how to compute the inner 

product of two multivectors. Given n-vectors W, X, Y, and Z the inner (and outer) produc t 

distributes over addition and is the equivalent of all product combinations: 

( ) ( ) = ( ) ( ) ( ) ( )
( ) ( ) = ( ) ( ) ( ) ( )∧ ∧ ∧ ∧ ∧

W + X Y + Z W Y + W Z + X Y + X Z  
W + X Y + Z W Y + W Z + X Y + X Z  

i i i i i
                (4.18) 

When the inner products are zero (means orthogonal), then the outer product is equivalent to 

the geometric product, and thus raises the grade of all product pairs. Note, the definitions in 

the section apply only when all the vectors are orthonormal, but always applies for qubits!!  

4.3.7 Outer Product and Inner Product Examples 

The best way to form a concrete understanding for the inner and outer products is to give 

some specific examples. Table 4.2 shows all combinations for multivectors X and Y for 

X Y∧  and X Yi  in 2G . Notice how the inner product is symmetrical. 

 

In Table 4.2 the inner and outer product are never both zero. The geometric product is simply 

the sum of the corresponding cell from both inner and outer product tables. The same 

operators are populated for 3G  as shown in Table 4.3. Notice the 3G  cases where the inner 

and outer product are both zero and geometric product is not because A B A B A B≠ + ∧i . 
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Table 4.2: Comparison of outer and inner products for 2G  

Y Y 
X Y∧  

+1 a b a b 
X Yi  

+1 a b a b 
+1 +1 a b a b +1 0 0 0 0 
a a 0 a b 0 a 0 +1 0 b 
b b –a b 0 0 b 0 0 +1 –a 

X 

a b a b 0 0 0 

 

X 

a b 0 b –a –1 
 

Table 4.3: Outer and Inner product pairs for 3G  

Y 
X Y∧  

+1 a b c a b a c b c a b c 
+1 +1 a b c a b a c b c a b c 
a a 0 a b a c 0 0 a b c 0 
b b –a b 0 b c 0 –a b c 0 0 
c c –a c –b c 0 a b c 0 0 0 

a b a b 0 0 a b c 0 01 01 0 
a c a c 0 –a b c 0 01 0 01 0 
b c b c a b c 0 0 01 01 0 0 

X 

a b c a b c 0 0 0 0 0 0 0 
 

Y 
X Yi  

+1 a b c a b a c b c a b c 
+1 0 0 0 0 0 0 0 0 
a 0 +1 0 0 b c 0 b c 
b 0 0 +1 0 –a 0 c –a c 
c 0 0 0 +1 0 –a –b a b 

a b 0 b –a 0 –1 0 0 –c 
a c 0 c 0 –a 0 –1 0 b 
b c 0 0 c –b 0 0 –1 –a 

X 

a b c 0 b c –a c a b –c b –a +1 
 

Please remember these results are only valid for orthonormal vector sets. Also all of the 

results quoted in the dissertation depend on the geometric product properties, but do no t 

always stipulate if the result is due to inner product or outer product features. So in general 

                                                 

1 A B A B A B≠ + ∧i  when A is not a vector because ( )( )ab bc ac=  yet ( ) ( ) ( ) ( ) 0ab bc ab bc= ∧ =i  
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the outer or inner product will only be specifically called out when required, otherwise one 

can assume the geometric product is being used by equations and tools.  

4.4 Geometric Algebra Tools for Boolean Logic 

Using the GA framework so far established, this section develops how to express all of the 

Boolean logic primitives of geometric algebra, proving that it is universal or Boolean 

complete. The result has an unusual XOR-like symmetry for both multiplication and 

addition. Subsequently, several tools are developed to automate the anticommutative and 

Boolean logic mapping rules of GA. 

4.4.1 Boolean Logic in GA 

The approach for implementing Boolean logic in geometric algebra requires the mapping of 

binary values to scalars in the algebra. Using Manthey’s conventions, the only scalar values 

available are the discrete value set 0A〈 〉  = {–1, 0, +1}. Table 4.4 shows the usual 

multiplication and addition tables for all the combinations of two input vectors for these 

values. To maintain the group closure properties, the addition table is implemented as 

modulo 3, in that {–1, 0, +1} is isomorphic to {0, 1, 2}, but this will prove to have no effect 

on the results presented in this work. The highlighted cells are the non-zero input conditions. 

    

Table 4.4: Addition and Multiplication Tables for G2 

+ 0 1 –1 * 0 1 –1 

0 0 1 –1 0 0 0 0 
1 1 –1 0 1 0 1 –1 

–1 –1 0 1 

 

–1 0 –1 1 



 55 

Manthey has previously shown that “0” has the special meaning of “cannot occur.”  This 

insight (which will be supported later) is that a “0” as an input will neither occur nor have an 

effect.  Therefore, the value “0” will be excluded as a possible input value and the two 

Boolean logic values {True, False} will be mapped to the symmetric values {+1, –1} 

respectively. This mapping can be simplified and displayed as the binary set {+, –} by 

removing the redundant integer 1. Table 4.5 contains the results rewritten using only these 

symmetric mapping conventions, plus short descriptive phrases for each behavior.  Notice the 

off-diagonal symmetry for both the multiplication and addition logic tables. Due to this 

symmetry, vector division is the same as multiplication, or a/b = a b, just as addition and 

subtraction are identical for the Galois Fields GF(2). Subtraction is discussed in more detail 

later in the section on Cartesian distance. 

 

Table 4.5: Binary Mapping Tables for Operators in G2 

+ + – * + – 

+ – 0 + + – 

– 0 + – – + 

If same then invert 
If different then cancel 

 

If same then + 
If different then – 

 

 

Assuming two input vectors 1A〈 〉 = {a, b}, the multiplication (*) table is equivalent to the 

logic XNOR (or even parity) operation and the addition (+) table is a combination of NAND 

and NOR logic. Table 4.6 illustrates the logic reasoning for these operations, suggesting this 

mapping is universal because it includes the equivalent primitives of logic NOT, logic OR, 
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and logic AND. This means it should be possible to map all logic operators into arithmetic 

expressions in GA using only addition and multiplication. This assertion is demonstrated 

later.  

Table 4.6: Logic Map Reasoning Table for G2 

GA Operator Logic Example For Conditions 

a XNOR b = + if a = b 
* 

a XNOR b = – if a ≠  b 

a NAND b = – if a = b = + 
+ 

a NOR b = + if a = b = – 
 
 

Based on this initial reasoning, several automatic tools were created to demonstrate that GA 

can express any logic operation; these tools are described in the following subsections. The 

final result of the derivation is summarized in Table 4.7. Even though the inputs are restricted 

to {+, –}, GA is still three-valued, so an output can be either +, –, or 0. The main convention 

will be to assign the value “+” to the logic value “True.” With those conventions, the middle 

column expresses the conventional mapping of assigning the value “–” to “False.” 

Alternatively, the right column maps the “Non-True” = “False” value to “0” and later this 

will be shown to be very useful when additive ly combining individual decode states. 

 

Table 4.7: Boolean Logic Summary Table for G2    

Boolean Logic Operation GA Mapping {+, –} GA Mapping {+, 0} 
Identity a a * 1  = a + 0 = a –1 – a 
NOT a a * –1 = – a –1 + a 
a XOR b – a b –1 + a b 
a OR b a + b – a b –1 – a – b + a b 
a AND b +1 – a – b – a b +1 + a + b + a b 
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The only immediately obvious expressions in Table 4.7 are those for NOT and XOR, yet the 

other expressions have a form similar to those using XOR-based Galois Fields. The complex 

and unintuitive GA logic mapping is best handled by the tools and methodology described in 

Section 4.4.2. Once this framework is in place, the summary results shown in Table 4.7 are 

easily comprehendible. 

4.4.2 GA Evaluator 

The sneak preview of the results presented in Section 4.4.1 is unintuitive due to the XOR-like 

behaviors, and compounded by the anticommutative properties of GA. Therefore, a 400- line 

Perl program (called ga.pl) was written and works for Sun’s UNIX and the Linux systems. 

This utility assumes that all vectors are orthonormal and simplifies expressions containing 

vector sums (or the product-of-sums) into a standardized sum-of-products format. This final 

expression can be displayed, or alternatively a table is produced for all combinations of {+,–} 

over the input vector set. This evaluation table gives a bird’s eye view of the equations and 

the values they produce. Sample outputs from ga.pl are shown in Figure 4.6 while Appendix 

B contains the complete source code with user documentation. The ga.pl tool was invaluable 

for this effort. 

 

The examples shown in Figure 4.6 validate the tool implementation of GA multiplication and 

addition tables, which are very nearly opposite to the Galois Field logic mappings for GF(2).  

The key to understanding these tables is to realize that the vertical bars ( | ) separate the table 

into three major columns containing: (1) the input enumerations, (2) the input, simplified to 

sum-of-products, and (3) the final sum’s output respectively. Extra spaces were manually 

inserted for these examples only to align the product columns under the appropriate product 
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term. All terms in equations and products are sorted into an alphanumeric order. Any sorting 

order works as long as it is applied consistently and corresponds to a handedness for the 

coordinate system. Products in expressions are listed in order from lowest to highest grade.  

 

ga.pl zeros "a + b"               ç zeros flag prints all table rows 
Input equation is a + b           ç a plus b 
INPUTS  a b | + a + b | OUTPUT    ç output = sum of a and b 
**************************************************************** 
ROW 00: - - |   -   - | + 
ROW 01: - + |   -   + | 0 
ROW 02: + - |   +   - | 0 
ROW 03: + + |   +   + | - 
**************************************************************** 
Row counts for outputs of ZERO=2, PLUS=1, MINUS=1 for TOTAL=4 rows. 
  
Input equation is a b             ç a times b 
INPUTS: a b | + a b | OUTPUT      ç output = a XNOR b (even parity) 
**************************************************************** 
ROW 00: - - |    +  | + 
ROW 01: - + |    -  | - 
ROW 02: + - |    -  | - 
ROW 03: + + |    +  | + 
**************************************************************** 
Row counts for outputs of ZERO=0, PLUS=2, MINUS=2 for TOTAL=4 rows. 
  
Input equation is a + b + c           ç a plus b plus c 
INPUTS: a b c | + a + b + c | OUTPUT  ç output = sum mod 3 of inputs 
**************************************************************** 
ROW 00: - - - |   -   -   - | 0 
ROW 01: - - + |   -   -   + | - 
ROW 02: - + - |   -   +   - | - 
ROW 03: - + + |   -   +   + | + 
**************************************************************** 
ROW 04: + - - |   +   -   - | - 
ROW 05: + - + |   +   -   + | + 
ROW 06: + + - |   +   +   - | + 
ROW 07: + + + |   +   +   + | 0 
**************************************************************** 
Row counts for outputs of ZERO=2, PLUS=3, MINUS=3 for TOTAL=8 rows. 
  
Input equation is a b c           ç a times b times c 
INPUTS: a b c | + a b c | OUTPUT  ç output = a XOR b XOR c (odd parity) 
**************************************************************** 
ROW 00: - - - |     -   | - 
ROW 01: - - + |     +   | + 
ROW 02: - + - |     +   | + 
ROW 03: - + + |     -   | - 
**************************************************************** 
ROW 04: + - - |     +   | + 
ROW 05: + - + |     -   | - 
ROW 06: + + - |     -   | - 
ROW 07: + + + |     +   | + 
**************************************************************** 

 

Figure 4.6: Sample Outputs from ga.pl Tool 
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ga.pl "(b0 + b1)(a0 + a1)"          ç product of sums (no table) 
Input equation is (b0 + b1)(a0 + a1) 
- a0 b0 - a0 b1 - a1 b0 - a1 b1     ç standardized form and order imposed 
 
ga.pl zeros "(a + b)(a b)"          ç bivector (or spinor) product 
Input equation is (a + b)(a b) 
INPUTS: a b | - a + b | OUTPUT 
**************************************************************** 
ROW 00: - - |   +   - | 0 
ROW 01: - + |   +   + | - 
ROW 02: + - |   -   - | + 
ROW 03: + + |   -   + | 0 
**************************************************************** 
Row counts for outputs of ZERO=2, PLUS=1, MINUS=1 for TOTAL=4 rows. 
 
ga.pl table "(a0 + a1)(b0 + b1)"    ç default command suppresses rows = 0 
Input equation is (a0 + a1)(b0 + b1) 
INPUTS: a0 a1 b0 b1 | + a0 b0 + a0 b1 + a1 b0 + a1 b1 | OUTPUT 
**************************************************************** 
ROW 00: -  -  -  -  |     +       +       +       +   | + 
ROW 03: -  -  +  +  |     -       -       -       -   | - 
**************************************************************** 
ROW 12: +  +  -  -  |     -       -       -       -   | - 
ROW 15: +  +  +  +  |     +       +       +       +   | + 
**************************************************************** 
Row counts for outputs of ZERO=12, PLUS=2, MINUS=2 for TOTAL=16 rows. 

 

Figure 4.7: Example Products and Table Controls for ga.pl Tool 

 

Another major facility is the ability to accept products-of-sums and expand them to the sum-

of-products under the GA’s anticommutative and simplification rules. These examples are 

shown in Figure 4.7. All products require parentheses and internal spaces within products to 

ensure correct parsing. Toggling the sign due to each swap while sorting vectors inside 

products is naturally accomplished using an instrumented bubble sort. When adjacent vector 

names match, they are simplified out of the product since a2 = 1. The spinor product (a + 

b)(a b) expands into a a b + b a b = b – a b b = b – a and the tool produces the identical 

results. Command line arguments control whether: (1) only the equation result is returned (no 

parameter), (2) the full table is displayed (“zero”), or (3) zero-valued output rows are 

excluded (“table”). The feature for suppressing zero-valued rows in the printout will be very 

useful later since the number of zero-valued states is a large percentage of the overall states. 
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4.4.3 Universal Logic Decode in GA 

The unintuitive XOR-like nature of the GA truth tables makes it difficult to design a specific 

expression with a particular set of desired output states. Consequently, it is necessary to 

develop a method of defining GA logic expressions with specific output values for specified 

table rows, which will be used by the table generation tool described in the Section 4.4.4. . 

 
Input equation is a + b + a b 
INPUTS: a b | + a + b + a b | OUTPUT 
**************************************************************** 
ROW 00: - - |   -   -   +   | - 
ROW 01: - + |   -   +   -   | - 
ROW 02: + - |   +   -   -   | - 
ROW 03: + + |   +   +   +   | 0   ç AND-like DECODE of ROW “++” 
**************************************************************** 
Row counts for outputs of ZERO=1, PLUS=0, MINUS=3 for TOTAL=4 rows. 

Figure 4.8: First attempt for multivector a + b + a b in G2 

ga.pl zeros "1 + a + b + a b”  
Input equation is 1 + a + b + a b 
INPUTS: a b | + 1 + a + b + a b | OUTPUT 
**************************************************************** 
ROW 00: - - |   +   -   -   +   | 0 
ROW 01: - + |   +   -   +   -   | 0 
ROW 02: + - |   +   +   -   -   | 0 
ROW 03: + + |   +   +   +   +   | +   ç DECODES LOGIC “AND” ROW 
**************************************************************** 
Row counts for outputs of ZERO=3, PLUS=1, MINUS=0 for TOTAL=4 rows. 

Figure 4.9: Second attempt produces two-input Logic AND in G2 

 

In Galois Fields, the logic inclusive OR equation is “a + b + a b.” Entering this equation into 

the table evaluator tool produced the result shown in Figure 4.8. The result is meaningful 

because the indicated row is that specified by logic AND.  Next, the result is converted to 

standard logic AND by adding “+1” to the output values to produce the result in Figure 4.9. 

This expression specifies “True” for one row out of four when both inputs are “True”, thus 

selecting or “decoding” row 310 (base ten) (or row 112 in base two). Notice that the table row 

numbers from the ga.pl tool are always printed in base ten.  
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By multiplying by “–1” the output is inverted, producing the logic NAND operator, because 

False = “–” is returned for the output only on row 3.  This result is displayed in Figure 4.10. 

 

ga.pl zeros "(1 + a + b + a b)(-1)" 
Input equation is (1 + a + b + a b) -1 
INPUTS: a b | - 1 - a - b - a b | OUTPUT 
**************************************************************** 
ROW 00: - - |   -   +   +   -   | 0 
ROW 01: - + |   -   +   -   +   | 0 
ROW 02: + - |   -   -   +   +   | 0 
ROW 03: + + |   -   -   -   -   | -        ç DECODES LOGIC NAND 
**************************************************************** 
Row counts for outputs of ZERO=3, PLUS=0, MINUS=1 for TOTAL=4 rows. 

Figure 4.10: Inversion of Logic AND Produces 2- input Logic NAND in G2 

 

Further experiments using the ga.pl tool revealed the logic OR and logic NOR expressions 

shown in Figure 4.11.  Notice the similarity of the algebraic form (± ± ±a b a b ) for these 

logic expressions (logic AND, logic NAND, logic OR, and logic NOR). 

 

INPUTS: a b | + a + b - a b | OUTPUT 
**************************************************************** 
ROW 00: - - | - - - | 0        *NOTE: mod 3 sums to 0 
ROW 01: - + | - + + | +        ç DECODES LOGIC “OR” ROWS 
ROW 02: + - | + - + | +        ç DECODES LOGIC “OR” ROWS 
ROW 03: + + | + + - | +        ç DECODES LOGIC “OR” ROWS 
**************************************************************** 

 
INPUTS: a b | - a - b + a b | OUTPUT 
**************************************************************** 
ROW 00: - - | + + + | 0       *NOTE: mod 3 sums to 0 
ROW 01: - + | + - - | -       ç DECODES LOGIC “NOR” ROWS 
ROW 02: + - | - + - | -       ç DECODES LOGIC “NOR” ROWS 
ROW 03: + + | - - + | -       ç DECODES LOGIC “NOR” ROWS 
**************************************************************** 

Figure 4.11: Two-input Logic OR and NOR in G2 

These results are novel and all expressions in the summary of logic operations for G2 = span 

{a, b} in Table 4.8 have a similar form that is indicative of the XOR-like symmetry first seen 

in the Galois Field expressions in Section 3.5. The similarity of the algebraic form between 
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logic AND/NAND and logic OR/NOR has its roots in information theoretic principles 

because both equations subdivide the four overall states into one preferred or “decoded” state 

with three other remaining states (or vice versa). This symmetry indicates the logic mapping 

is not AND-dominant (as in Galois Fields) and supports the original assertion that the “add” 

operator symmetrically contains both NAND-like and NOR-like logic properties.  

Table 4.8: Summary of Logic Operations for {±, 0} in G2 

Logic Gate GA Equation Decodes to Rest are Inversion of 
a AND b (+ 1 + a + b + a b) Single + 0 NAND below 
a NAND b (– 1 – a – b – a b) Single – 0 AND above 
a OR b (+ a + b – a b) Single 0 + NOR below 
a NOR b (– a – b + a b) Single 0 – OR above 
a XOR b (– 1 + a b) Half +s 0 XNOR below 
a XNOR b (+ 1 – a b) Half –s 0 XOR above 

 
 

 
Taking a similar approach for three vectors, G3 = span {a, b, c} produces the logic AND 

result in Figure 4.12. To individually select a single row, every unique element of every rank 

in the group must be included. An in-depth review of the row output choices {+, –, 0} will 

demonstrate the significance of the output values in Figure 4.12. 
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ga.pl zero "(a + b + c + a b + a c + b c + a b c)" 
Input expression is (+ a + b + c + a b + a c + b c + a b c) 
INPUTS: a b c | + a + b + c + a b + a c + b c + a b c | OUTPUT 
****************************************************************** 
ROW 00: - - - | - - - + + + - | - 
ROW 01: - - + | - - + + - - + | - 
ROW 02: - + - | - + - - + - + | - 
ROW 03: - + + | - + + - - + - | - 
****************************************************************** 
ROW 04: + - - | + - - - - + + | - 
ROW 05: + - + | + - + - + - - | - 
ROW 06: + + - | + + - + - - - | - 
ROW 07: + + + | + + + + + + + | +        ç DECODES LOGIC “AND” 
****************************************************************** 
Row counts for outputs of ZERO=0, PLUS=1, MINUS=7 for TOTAL=8 rows. 
 

Figure 4.12: Logic AND for {+, –} in G3 

 

If the traditional Boolean values {True, False} are mapped to {+, –}, then the table represents 

the three-input logic AND behavior. As Figure 4.13 illustrates, when +1 is added to any 

equation producing only values {+, –}, then the mappings change to {–, 0} with 

corresponding gate inversion (ANDèNAND). The point is that the choice of mappings for 

{True, False} is arbitrary yet self-consistent and the choice depends on the context where the 

equation is to be used.  

 

ga.pl zero "(1 + a + b + c + a b + b c + a c + a b c)" 
Input equation is (1 + a + b + c + a b + b c + a c + a b c) 
INPUTS: a b c | + 1 + a + b + c + a b + a c + b c + a b c | OUTPUT 
**************************************************************** 
ROW 00: - - - | + - - - + + + - | 0 
ROW 01: - - + | + - - + + - - + | 0 
ROW 02: - + - | + - + - - + - + | 0 
ROW 03: - + + | + - + + - - + - | 0 
**************************************************************** 
ROW 04: + - - | + + - - - - + + | 0 
ROW 05: + - + | + + - + - + - - | 0 
ROW 06: + + - | + + + - + - - - | 0 
ROW 07: + + + | + + + + + + + + | -     ç DECODES LOGIC “NAND” 
**************************************************************** 
Row counts for outputs of ZERO=7, PLUS=0, MINUS=1 for TOTAL=8 rows. 

 

Figure 4.13: Logic NAND for {–, 0} in G3 
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Following the same process used for the two-input operators, Table 4.9 summarizes the 

equations for the three-input logic expressions using {+, –} values, followed in the next line 

with {+, 0} version. The invert gates (not shown) are an inversion of each primary equation. 

 

Table 4.9: Summary of Logic Operations in G3 

Logic Expression Geometric Algebra Equation Decodes to Rest are 
(+ a + b + c + a b + a c + b c + a b c)  Single + – a AND b AND c 
(– 1 – a – b – c – a b – a c – b c – a b c) Single + 0 
(+ a + b + c – a b – a c – b c + a b c) Single – + a OR b OR c 
(– 1 – a – b – c + a b + a c + b c – a b c) Single 0 + 
(+ a b c) Half +s – a XOR b XOR c  
(– 1 – a b c) Half +s 0 

 
 

Further investigation into vector spaces Gn, where n ∈ {4-10} also produced AND/NAND 

expressions analogous to the forms found for the 2-3 input vector cases. Expressions for all 

the combinations of a small vector set were initially entered manually and validated using the 

ga.pl tool. This combination set can be generated for vectors {a, b, c, …} by expanding the 

expression (-1)n(1 + a)(1 + b)(1 + c) … which creates the sum of all terms, with appropriate 

signs. Since the number of unique terms grows as N=2n, it was clear that creating a tool to 

automate the generation all the combinations of a vector set would be useful! 

 

The “GA And Generator” Tool (called gandg.pl) produces the logic AND expression for a 

list of input vectors as an expansion of (-1)n(1 + a)(1 + b)(1 + c). For an even number of 

input vectors, the signs are all “+” and, when n is odd, the signs are all “–.” Using UNIX 

pipes to route the output from gandg.pl (see Appendix C) into the ga.pl tool produces the 
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results in Figure 4.14. The results constitute a proof-by-example of the AND-expressions for 

all vector sets up through ten inputs. Only the summary line is shown for the large vector sets 

and even though not shown, they all successfully selected (or decoded) only the last row.  

 

Notice in Figure 4.14 that, since the intermediate product results have all the same sign, it is 

possible to construct a proof for creating the AND gate for any number of vectors as follows. 

For n orthonormal vectors in Gn, the AND operator decodes to the numerically sorted last 

row (0 thru N–1 = 2n–1) of the evaluation table, when all the input values are True = “+” and 

all the other rows produce a zero output. The reason for choosing the {+, 0} mapping for 

{True, False} will be clear in Section 4.4.4 when various decoded rows are added together. 

 

gandg.pl "a,b,c,d" | ga.pl table  ç pipe into ga.pl showing non-zero rows 
INPUTS: a b c d | + 1 + a + b + c + d + a b + a c + … + a b c d | OUTPUT 
************************************************************************* 
ROW 15: + + + + | + + + + + + + + + + + + + + + + | + 
************************************************************************* 
Row counts for outputs of ZERO=15, PLUS=1, MINUS=0 for TOTAL=16 rows. 
 
gandg.pl "a,b,c,d,e" | ga.pl table  ç gandg.pl inverts all signs when n=odd  
INPUTS: a b c d e | - 1 - a - b - c - d - e - a b - … - a b c d e | OUTPUT 
************************************************************************** 
ROW 31: + + + + + | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | + 
************************************************************************** 
Row counts for outputs of ZERO=31, PLUS=1, MINUS=0 for TOTAL=32 rows. 
 
gandg.pl "a,b,c,d,e,f" | ga.pl table      ç LARGE equation output removed 
Row counts for outputs of ZERO=63, PLUS=1, MINUS=0 for TOTAL=64 rows. 
 
gandg.pl "a,b,c,d,e,f,g" | ga.pl table    ç LARGE equation output removed 
Row counts for outputs of ZERO=127, PLUS=1, MINUS=0 for TOTAL=128 rows. 
 
gandg.pl "a,b,c,d,e,f,g,h" | ga.pl table  ç LARGE equation output removed 
Row counts for outputs of ZERO=255, PLUS=1, MINUS=0 for TOTAL=256 rows. 
 
gandg.pl "a,b,c,d,e,f,g,h,i" | ga.pl table ç LARGE equation output removed 
Row counts for outputs of ZERO=511, PLUS=1, MINUS=0 for TOTAL=512 rows. 
 
gandg.pl "a,b,c,d,e,f,g,h,i,j" | ga.pl tableç LARGE equation output removed 
Row counts for outputs of ZERO=1023, PLUS=1, MINUS=0 for TOTAL=1024 rows. 

 

Figure 4.14: Validation of logic AND for up to ten vectors using {+, 0} 
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Since the AND operator selects 1 out of N states, this maximum selectivity requires the 

maximum number of distinguishing terms, which is the complete binomial expansion for all 

combinations of the input vector set of every rank (as defined by Pascal’s Triangle).  Since 

N=2n has only even factors, N is therefore not divisible by 3, which means that the modulo 3 

sum of N signs (all + or all –) will always give a non-zero result (i.e. N mod 3 ≠  0). With 

similar reasoning, if N is divisible by 4 ( evenG  where n is even), then all +s always add to 

“+.” Likewise if N is not divisible by 4 ( oddG  when n is odd) all –s always add to “+.” 

Therefore, “+” will always be the value output for the last decoded row when all the products 

are all “+” or all “–.” Q.E.D. 

 

The last comment for this proof explains why every n-product for the last row is either all “+” 

or all “–.” The GA product operation is equivalent to XNOR, which produces a “+” when 

two inputs are the same. When last row (N-1) is decoded (all input vectors have value “+”), 

then every product of every rank must produce a “+.” Therefore, only the sign in front of 

each product determines the final sign of that product term. It is therefore evident that logic 

AND can be expressed in this way for any number of input vectors, based on the algorithm 

used by the gandg.pl tool, which creates the complete combination set and assigns “+” and 

“–” signs correctly to all terms respectively for Geven  and Godd. It is also evident that the 

AND decode equation for the last row of grade n has the form 
0

( 1)
n

n

i
i

A
=

− ∑ , which is 

equivalent to the fully expanded product of (–1)n (1 + a)(1 + b)(1 + c) … for every vector. 

Likewise, selecting row zero can always be expressed as (–1)n (1 – a)(1 – b)(1 – c)… etc. 
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Extending this reasoning, any row can be selectively obtained by inverting the input vector in 

every product term equivalent to the binary “0”s in the row number (base two) as Figure 4.15 

demonstrates. The selected row always has the same sign for every product of the final sum 

and represents a rotation of the hypercube based on the orientation of vector-row reference 

frame. Inverting an entire equation for any row inverts the final output to produce a “–.” 

 

Input equation is (1 - a - b + a b) ç invert both a and b 
INPUTS: a b | + 1 - a - b + a b | OUTPUT 
**************************************************************** 
ROW 00: - - | + + + + | +  ç decodes A–– =(1–a)(1–b)= [+000] = R0 
**************************************************************** 
 
Input equation is (1 - a + b - a b) ç invert a only 
INPUTS: a b | + 1 - a + b - a b | OUTPUT  
**************************************************************** 
ROW 01: - + | + + + + | +  ç decodes A–+ =(1–a)(1+b)= [0+00] = R1 
**************************************************************** 
 
Input equation is (1 + a - b - a b) ç invert b only 
INPUTS: a b | + 1 + a - b - a b | OUTPUT  
**************************************************************** 
ROW 02: + - | + + + + | +  ç decodes A+– =(1+a)(1–b)= [00+0] = R2 
**************************************************************** 
 
Input equation is (1 + a + b + a b) ç AND behavior 
INPUTS: a b | + 1 + a + b + a b | OUTPUT  
**************************************************************** 
ROW 03: + + | + + + + | +  ç decodes A++ =(1+a)(1+b)= [000+] = R3 
**************************************************************** 

Figure 4.15: Arbitrary Row Decode Rk for Vectors in G2 

 

Therefore any specific row Rk can be selected using the equations (–1)n(1 ± a)(1 ± b)…, 

where the signs select the row number. This row-decode technique (and the gandg.pl tool) 

will used in the Section 4.4.4 to enable the construction of GA expressions for arbitrarily 

complex logic tables. The table output from ga.pl tool can itself be compactly represented as 

a vector, where each row output Rk is the value in the vector [R0, R1, R2, R3, …] and this vector 

representation will be used extensively in later sections.  
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4.4.4 GA Generator 

The final step in creating equations that define arbitrary logic expressions is to prove that 

each row Rk = (–1)n(1 ± a)(1 ± b)… is linearly independent of the other rows due to the 

choice of having the undecoded rows sum to zero. Therefore adding (or subtracting) any 

number of rows will combine linearly to produce the final expression. The row decode 

process discussed in Section 4.4.3, is used in Figure 4.16 to illustrate the results of adding 

and subtracting two rows. Since each row contains every product combination (though with 

differing signs) the sum simply flips signs or cancels for the common n-vectors. 

 

Input equation is (1 - a + b - a b) + (1 + a + b + a b)    
INPUTS: a b | - 1 - b | OUTPUT 
**************************************************************** 
ROW 01: - + | - - | +         ç Contribution of ROW 01 (base 2) 
ROW 03: + + | - - | +         ç Contribution of ROW 11 (base 2) 
**************************************************************** 
Row counts for outputs of ZERO=2, PLUS=2, MINUS=0 for TOTAL=4 rows. 
 
(1 – a)(1 + b)+(1 + a)(1 + b)= (1 – a + 1 + a)(1 + b)= -1(1 + b)= -1 - b 
 
Input equation is (1 - a + b - a b) + (- 1 - a - b - a b) 
INPUTS: a b | + a + a b | OUTPUT 
**************************************************************** 
ROW 01: - + | - - | +         ç Contribution of ROW 01 (base 2) 
ROW 03: + + | + + | -         ç Contribution of ROW 11 (base 2) 
**************************************************************** 
Row counts for outputs of ZERO=2, PLUS=1, MINUS=1 for TOTAL=4 rows. 
 

(1 – a)(1 + b)–(1 + a)(1 + b)= (1 – a - 1 - a)(1 + b)= +a(1 + b)= a + a b 

Figure 4.16: Addition and Subtraction of ROW 1 and ROW 3 for vectors in G2 

 

The row decoding and summation techniques are built into a GA-Generator (called gag.pl) 

tool that utilizes the AND generation tool and then routes the results through the ga.pl. The 

tool inputs are an orthonormal vector list followed by the row number list (including signs) 

or the Rk vector notation. See Appendix D for source code of gag.pl tool. 
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The gag.pl tool automatically creates and routes individual row equations into the ga.pl 

simplification tool. The summation process identifies like terms and adds them together 

using modulo 3 arithmetic rules, which either adjusts the signs or causes terms to cancel 

formally. This formal cancellation of opposite terms causes the resulting equation always to 

return the minimal expression, as shown in Figure 4.17. 

 

gag.pl "a,b" "+0" zero ç for vectors {a, b} generate a "+" in row 0 
INPUTS: a b | + 1 - a - b + a b | OUTPUT ç and print table all rows 
**************************************************************** 
ROW 00: - - | + + + + | + 
ROW 01: - + | + + - - | 0 
ROW 02: + - | + - + - | 0 
ROW 03: + + | + - - + | 0 
**************************************************************** 
Row counts for outputs of ZERO=3, PLUS=1, MINUS=0 for TOTAL=4 rows. 

 
gag.pl "a,b" "+0,3" zero ç for {a, b} generate a "+" in rows 0 and 3 
INPUTS: a b | - 1 - a b | OUTPUT     ç and print table with all rows 
**************************************************************** 
ROW 00: - - | - - | + ç row decode is (1-a)(1-b)= + 1 - a - b + a b 
ROW 01: - + | - + | 0 
ROW 02: + - | - + | 0 
ROW 03: + + | - - | + ç row decode is (1+a)(1+b)= + 1 + a + b + a b  
**************************************************************** 
Row counts for outputs of ZERO=2, PLUS=2, MINUS=0 for TOTAL=4 rows. 
 

Figure 4.17: GA Generator Tool Examples 

 

There is exactly one equation in the sum-of-products format for each specific logic table 

because every row equation is a unique combination of (1 ± a)(1 ± b)…, so any specific sum 

will also be unique. No other formal logic simplification rules are required besides the rules 

outlined here. This contrasts with traditional Boolean logic equations, which have a variety 

of implementations for the same logic expression depending on space-time tradeoffs.  
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4.5 GA Expression Solver Tool  

The last important tool is the gasolve.pl utility that iteratively solves an equation identity by 

substituting every possible operator combination into that equation and printing only those 

combinations matching the outcome goal. The number of combinations grows extremely fast, 

since the number of possible product terms is N=2n and varying the coefficient sign {–,0,+} 

for each term is equivalent to a ternary count with 3N combinations. Therefore, G0 has three 

combinations, G1 has 32 = 9 operator combinations {00, 0 –, 0 +, – 0, – –, – +, + 0, + –, + +}, 

G2 has 92 = 81 combinations {0000 to ++++}, G3 has 812 = 6561 combinations {00000000 

to ++++++++}, and G4 has 65612 = 43,046,721 combinations.  

 

Increasing the vector space dimensionality by one squares the number of operator 

combinations that must be searched. Due to the number of operators and the execution speed, 

the gasolve.pl tool can currently prove exhaustively identities up to G4, which is the size of 

two qubits. Faster implementations are possible, but such searching is not an efficient way to 

explore large spaces. Nonetheless, this tool proved invaluable for discovering that solutions 

exist for some unintuitive identities. See the source code for gasolve.pl in Appendix E. 

 

The arguments to the tool are gasolve.pl “<vector list>” “<main with X>” “<goal with X>,” 

where the equation combinations are substituted for the capital “X” in both the main or goal 

equations. This tool’s usefulness is illustrated in Figure 4.18. The case X = 0 is skipped, so 

the total count is 3N–1. The first two examples demonstrate this tool’s ability to search for the 

multiplicative inverse of several multivectors. The third example illustrates that row decode 



 71 

operators (1±a) and (1±b) have two sequential applications that are identical to two 

concurrent ones. The last example shows that multiple applications of specific operators for 

X * X = X ∧  X = X are the same as one, which are known as the idempotent operators. 

 

gasolve.pl "a,b" "(1 + a)(X)" "1"   ç find multiplicative inverse of (1+a)? 
Attempted 80 with 0 found.          ç NO solution exists 
 
gasolve.pl "a,b" "(1 + a + b)(X)" "1" ç multiplicative inverse of (1+a+b)? 
Found Match for X = - 1 + a + b  in (1 + a + b)(X) = + 1 
Attempted 80 with 1 found.          ç One solution exists 
 
gasolve.pl "a,b" "(X)(X)" "(-1)(X)" ç solve for X * X = - X == X + X 
Found Match for X = - 1  in (X)(X) = + 1 
Found Match for X = + 1 - a  in (X)(X) = - 1 + a      
Found Match for X = + 1 + a  in (X)(X) = - 1 - a      
Found Match for X = + 1 - b  in (X)(X) = - 1 + b      
Found Match for X = + 1 + b  in (X)(X) = - 1 - b      
Found Match for X = + 1 - a - b - a b in (X)(X) = - 1 + a + b + a b 
Found Match for X = + 1 + a - b - a b in (X)(X) = - 1 - a + b + a b 
Found Match for X = + 1 - a + b - a b in (X)(X) = - 1 + a - b + a b 
Found Match for X = + 1 + a + b - a b in (X)(X) = - 1 - a - b + a b 
Found Match for X = + 1 - a - b + a b in (X)(X) = - 1 + a + b - a b 
Found Match for X = + 1 + a - b + a b in (X)(X) = - 1 - a + b - a b 
Found Match for X = + 1 - a + b + a b in (X)(X) = - 1 + a - b - a b 
Found Match for X = + 1 + a + b + a b in (X)(X) = - 1 - a - b - a b 
Attempted 80 with 13 found. ç combinations and products of (1±a) and (1±b) 
 
gasolve.pl "a0,a1" "(X)(X)" "X"ç solve for X * X = X or idempotent 
Found Match for X = + 1  in (X)(X) = + 1 
Found Match for X = - 1 - a0  in (X)(X) = - 1 - a0 
Found Match for X = - 1 + a0  in (X)(X) = - 1 + a0 
Found Match for X = - 1 - a1  in (X)(X) = - 1 - a1 
Found Match for X = - 1 + a1  in (X)(X) = - 1 + a1 
Found Match for X = - 1 - a0 - a1 - a0 a1 in (X)(X) = - 1 - a0 - a1 - a0 a1 
Found Match for X = - 1 + a0 - a1 - a0 a1 in (X)(X) = - 1 + a0 - a1 - a0 a1 
Found Match for X = - 1 - a0 + a1 - a0 a1 in (X)(X) = - 1 - a0 + a1 - a0 a1 
Found Match for X = - 1 + a0 + a1 - a0 a1 in (X)(X) = - 1 + a0 + a1 - a0 a1 
Found Match for X = - 1 - a0 - a1 + a0 a1 in (X)(X) = - 1 - a0 - a1 + a0 a1 
Found Match for X = - 1 + a0 - a1 + a0 a1 in (X)(X) = - 1 + a0 - a1 + a0 a1 
Found Match for X = - 1 - a0 + a1 + a0 a1 in (X)(X) = - 1 - a0 + a1 + a0 a1 
Found Match for X = - 1 + a0 + a1 + a0 a1 in (X)(X) = - 1 + a0 + a1 + a0 a1 
Attempted 80 with 13 found. 

Figure 4.18: Examples of gasolve.pl for G2 

 

Idempotent operators (denoted as Pk = –Rk) are important to identify in geometric algebra 

because all Boolean projection operators Pk are idempotent [35]. Idempotent operators also 

have a unique square root that must be their inverse, which is similar to the property ±12 =+1. 
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The idempotent properties are inherent in the row decode equations R0-3 = (–1)2(1±a)(1±b) 

because, as will be shown, all their factors (–1 ∓ a) and (–1 ∓ b) are also idempotent. 

 

The eight combinations of Pk = (–1±a±b±a b) in the third example in Figure 4.18 cannot be 

derived using the four combinations of the standard product order –(1±a)(1±b). The other 

four combinations come from the reversed product order combinations –(1±b)(1±a). This 

order swapping converts to the complement of the decoded row and switches from the 

linearly independent row mapping of {+, 0} to the traditional Boolean logic mapping {+, –}. 

 

Table 4.10: Product terms (1±a)(1±b) and (1±b)(1±a) show phase combinations for G2  

Standard Product Order R0-3 = (1±a)(1±b) Reverse Product Order R4-7 = (1±b)(1±a) 
Input expression is (1 - a)(1 - b) 
INPUTS: a b | + 1 - a - b + a b | OUT 
************************************* 
ROW 00: - - | + + + + | + 
ROW 01: - + | + + - - | 0 
ROW 02: + - | + - + - | 0 
ROW 03: + + | + - - + | 0 
************************************* 

Input expression is (1 - b)(1 - a) 
INPUTS: a b | + 1 - a - b - a b | OUT 
************************************* 
ROW 00: - - | + + + - | - 
ROW 01: - + | + + - + | - 
ROW 02: + - | + - + + | - 
ROW 03: + + | + - - - | + 
************************************* 

Input expression is (1 - a)(1 + b) 
INPUTS: a b | + 1 - a + b - a b | OUT 
************************************* 
ROW 00: - - | + + - - | 0 
ROW 01: - + | + + + + | + 
ROW 02: + - | + - - + | 0 
ROW 03: + + | + - + - | 0 
************************************* 

Input expression is (1 + b)(1 - a) 
INPUTS: a b | + 1 - a + b + a b | OUT 
************************************* 
ROW 00: - - | + + - + | - 
ROW 01: - + | + + + - | - 
ROW 02: + - | + - - - | + 
ROW 03: + + | + - + + | - 
************************************* 

Input expression is (1 + a)(1 - b) 
INPUTS: a b | + 1 + a - b - a b | OUT 
************************************* 
ROW 00: - - | + - + - | 0 
ROW 01: - + | + - - + | 0 
ROW 02: + - | + + + + | + 
ROW 03: + + | + + - - | 0 
************************************* 

Input expression is (1 - b)(1 + a) 
INPUTS: a b | + 1 + a - b + a b | OUT 
************************************* 
ROW 00: - - | + - + + | - 
ROW 01: - + | + - - - | + 
ROW 02: + - | + + + - | - 
ROW 03: + + | + + - + | - 
************************************* 

Input expression is (1 + a)(1 + b) 
INPUTS: a b | + 1 + a + b + a b | OUT 
*************************************** 
ROW 00: - - | + - - + | 0 
ROW 01: - + | + - + - | 0 
ROW 02: + - | + + - - | 0 
ROW 03: + + | + + + + | + 
************************************* 

Input expression is (1 + b)(1 + a) 
INPUTS: a b | + 1 + a + b - a b | OUT 
************************************* 
ROW 00: - - | + - - - | + 
ROW 01: - + | + - + + | - 
ROW 02: + - | + + - + | - 
ROW 03: + + | + + + - | - 
************************************* 
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The relationships for the row decode operators Rk shown in Table 4.10 were only discovered 

using the gasolve.pl tool. Many other operator relationships have been discovered and such 

equation solving constitutes either an existence proof or provides an exhaustive constructive 

proof when n is small. The idempotent operators are important because they will later relate 

the row decode states Rk to the eigenvectors and projection operators for the system. 

4.6 Cartesian Distance Metric 

Cartesian distance is the traditional metric for the distance between two points in a space. 

This distance definition relies on the scalar coefficient differences for N=2n n-vectors. The 

first step in comparing two points is simply taking the coefficient difference between each 

matching n-vector dimension using the differences in Table 4.11. The max difference is ±1 

because the only scalars are {–1, 0, +1}. Identical scalars produce a zero difference. 

 

Table 4.11: Difference between two Scalars for G1  

b Difference  
a – b –1 0 +1 

–1 0 –1 +1 

0 +1 0 –1 a 

+1 –1 +1 0 

 

The most effective way to visualize the alignment of matching dimension coefficients is first 

to introduce a ternary number labeling notation for Gn expressions in the standardized sort 

order.  The convention adopted here for full Gn equations is to place the least significant 

grade to the left and the most significant to the right (i.e. c01+ c1a + c2b + c3a b). Represent 
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only the scalar coefficients ci ∈{–, 0, +} for each term as an ordered set of ternary-valued 

numbers {c3 c2 c1 c0}, with the least significant value on the right and higher significance to 

the left. This compact set notation aligns the coefficients for matching dimensions and 

removes redundant dimension labeling information not required for distance computation. 

For example for {c1 c0}: +1 + 0 a = {0 +} where c0=+1 and c1=0;  0 + a = {+ 0} where c0 = 0 

and c1 = +1; and +1 + a = {+ +} where c0 = +1 and c1 = +1. Also shown in the extreme right 

column of Table 4.12 are the corresponding table vector notation [R0 R1], which is a dual 

representation for the algebraic set notation of {c1 c0} for any Gn. Don’t get confused! 

 

Table 4.12: Ternary Number Label Notation for G1 = span {a} 

Equation 
for X 

Eqn Label 
{c1 c0} 

Additive 
Inverse –X 

Multiplicative 
Inverse X-1 

Cartesian 
Distance 

Table Output 
[R0 R1] 

0 {0 0} {0 0} none 0 [0 0] 
–1 + 0 a {0 –} {0 +} X-1 = X 1 1=  [– –] 
+1 + 0 a {0 +} {0 –} X-1 = X 1 1=  [+ +] 

0 – a {– 0} {+ 0} X-1 = X 1 1=  [+ –]  
0 + a {+ 0} {– 0} X-1 = X 1 1=  [– +] 

–1 – a {– –} {+ +} none 2  [+ 0]  
+1 – a {– +} {+ –} none 2  [– 0] 
–1 + a {+ –} {– +} none 2  [0 +]  
+1 + a {+ +} {– –} none 2  [0 –] 

  
 

The Cartesian distance between any two multivectors is now computed as simply the square 

root of the sums of the coefficient differences squared: ( )
1

2

0

( )
N

i
i

diff c
−

=
∑ . The square nullifies 

all sign differences because ( )2
1 1± = + , so the Cartesian distance is simply the square root of 
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the number of differing coefficient terms.  The maximum distance in Gn is 1n + , for any 

equation without zero-valued coefficients ( 0)ic ≠ , and its complement. The additive inverse 

represents the maximum distance for any expression containing the same terms. Distances 

less than the maximum can be thought of as a phase difference. The set labeling shorthand 

for algebraic expressions and the dual table vector notation are used in many later examples. 

4.7 Computational Basis and Projectors  

Idempotent operators for G2 were first mentioned in Section 4.5 and are identified as the 

projection operators Pk where Pk = –Rk. Idempotent operators are important for making 

measurements in quantum mechanics because in Hn every projection operator Pk is a logic 

decode operator and vice versa. It is also well known that idempotent projection operators are 

mathematically related to eigenvectors and eigenvalues [35]. This section will identify these 

relationships for geometric algebra and also introduce the underlying topological meaning. 

 

Each projection operator Pk in GA represents the logic-NAND of every input vector in some 

specific state, and thereby functions as a logic decoding operator. Therefore, they are also 

equivalent to the computational basis states (see more in Section 5.5). An important question 

is how to find the orthogonal basis states in GA that correspond to the eigenvectors for those 

projectors? Chris Doran [9] states in a discussion about the geometric algebra equivalent of 

orthonormal Pauli matrices, that the following properties must be true for an orthonormal 

frame of eigenvectors { }ke  using G2 = span{ },a0 a1 . First, the eigenvectors must square to 

unity ( )2
1k =e , which are easily found using the gasolve.pl tool in Figure 4.19. 
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gasolve.pl "a0,a1" "(X)(X)" "(1)" 
Found Match for X = - 1  in (X)(X) = + 1 
Found Match for X = + 1  in (X)(X) = + 1 
Found Match for X = - a0 in (X)(X) = + 1 
Found Match for X = + a0 in (X)(X) = + 1 
Found Match for X = - a1 in (X)(X) = + 1 
Found Match for X = + a1 in (X)(X) = + 1 
Found Match for X = - a0 - a1 - a0 a1 in (X)(X) = + 1 
Found Match for X = + a0 - a1 - a0 a1 in (X)(X) = + 1 
Found Match for X = - a0 + a1 - a0 a1 in (X)(X) = + 1 
Found Match for X = + a0 + a1 - a0 a1 in (X)(X) = + 1 
Found Match for X = - a0 - a1 + a0 a1 in (X)(X) = + 1 
Found Match for X = + a0 - a1 + a0 a1 in (X)(X) = + 1 
Found Match for X = - a0 + a1 + a0 a1 in (X)(X) = + 1 
Found Match for X = + a0 + a1 + a0 a1 in (X)(X) = + 1 
Attempted 80 with 14 found 

 Figure 4.19: Solve for eigenvectors where ( )2
1k =e  

 

Next, the projection operators ( )1 2k kP = + e  must satisfy the relationship ( )1 2k k+ =e e  

( )1 2k+ e . This equation can be simplified for G2 because, with 2 k k k k kP P P P R= + = − = , 

where the row decode Rk is ( ) ( )2 2* 1 2 1k k k kR P= = + = +e e , and so ( )1k k kP R= − = − + e . 

Since projectors Pk are idempotent and ( )1k k kR P= − = + e , then the solutions for k k kR R=e  

are ( ) ( )1 1k k k+ = +e e e , which are found using gasolve.pl tool in Figure 4.20. Notice that the 

input expression (1 + X) is written as (1 X) because X contains a sign when substituted. 

 

gasolve.pl "a0,a1" "(X)(1 X)" "(1 X)" 
Found Match for X = - 1  in (X)(1 X) = 0 
Found Match for X = + 1  in (X)(1 X) = - 1 
Found Match for X = - a0  in (X)(1 X) = + 1 - a0 
Found Match for X = + a0  in (X)(1 X) = + 1 + a0 
Found Match for X = - a1  in (X)(1 X) = + 1 - a1 
Found Match for X = + a1  in (X)(1 X) = + 1 + a1 
Found Match for X = - a0 - a1 - a0 a1 in (X)(1 X) = + 1 - a0 - a1 - a0 a1 
Found Match for X = + a0 - a1 - a0 a1 in (X)(1 X) = + 1 + a0 - a1 - a0 a1 
Found Match for X = - a0 + a1 - a0 a1 in (X)(1 X) = + 1 - a0 + a1 - a0 a1 
Found Match for X = + a0 + a1 - a0 a1 in (X)(1 X) = + 1 + a0 + a1 - a0 a1 
Found Match for X = - a0 - a1 + a0 a1 in (X)(1 X) = + 1 - a0 - a1 + a0 a1 
Found Match for X = + a0 - a1 + a0 a1 in (X)(1 X) = + 1 + a0 - a1 + a0 a1 
Found Match for X = - a0 + a1 + a0 a1 in (X)(1 X) = + 1 - a0 + a1 + a0 a1 
Found Match for X = + a0 + a1 + a0 a1 in (X)(1 X) = + 1 + a0 + a1 + a0 a1 
Attempted 80 with 14 found 

Figure 4.20: Solve for eigenvectors where ( ) ( )1 1k k k+ = +e e e  
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This result in Figure 4.20 is consistent with Figure 4.19 because the eigenvectors ek =    

(±a0±a1±a0 a1) are actually multivectors Ek, where Rk = (+1 + Ek) = (+1±a0±a1±a0 a1) and 

the idempotent projection operators are Pk = – (1 + Ek) = ( 1 )− a0 a1 a0 a1∓ ∓ ∓ .  

 

 

Figure 4.21: Major diagonals form eigenvectors E0-3 on left and duals E7-4 on right for G2 

 

Now that the eigenmultivectors Ek = (±a0±a1±a0 a1) have been identified in multiple ways, 

the following geometric interpretation provides the topological meaning. In Figure 4.21, the 

Ek = (±a0±a1±a0 a1) are the four major cube diagonals (pointing to the eight corners) 

formed by all sums of the elements {a0, a1, a0 a1}. Four of these solutions match the “–” 

decode equations of P0–3 = – (1 + Ek) = (–1)(1±a0)(1±a1) and represent the projection matrix 

diagonals written as vectors P0 = [–000], P1 = [0–00], P2 = [00–0], and P3 = [000–]. The 

matching “+” row decodes Rk = (1 + Ek) = –Pk = (1±a0)(1±a1) are R0 = [+000], R1 = [0+00], 

R2 = [00+0], and R3 = [000+]. The partial completeness properties are demonstrated by the 

sums of P0 + P1 + P2 + P3 = [– – – –] = –1 and R0 + R1 + R2 + R3 = [+ + + +] = +1. The 
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remaining four eigenvectors are the major diagonals pointing to the opposite corners and 

equivalent to P7–4 = (–1)(1±a1)(1±a0) or P7 = [+ – – –], P6 = [– + – –], P5 = [– – + –], and P4 

= [– – – +] and likewise R7-4 = (1±a1)(1±a0) or R7 = [– + + +], R6 = [+ – + +], R5 = [+ + – +], 

and R4 = [+ + + –], which can all be written as linear combinations of the more primitive P0-3 

and R0–3.  The same completeness properties are true: P4 + P5 + P6 + P7 = [– – – –] = –1 and 

R4 + R5 + R6 + R7 = [+ + + +] = +1 resulting in the important overall completeness properties 

P0 + P1 + P2 + P3 + P4 + P5 + P6 + P7 = +1 and R0 + R1 + R2 + R3 + R4 + R5 + R6 + R7 = –1.  

This matches the standard required completeness relation =1kk
P∑  for projection operators 

[7]. These results are summarized in Table 4.13 using the row-decode vector notation. 

 

Table 4.13: Eigenvector Summary from Ek Rk = Rk for G2 

Primary Basis Set Dual Basis Set 
k = Ek = R k–1 Pk = –Rk   Rk = 1+Ek  k = Ek = R k–1 Pk = –Rk   Rk = 1+Ek  
0 [0 – – –] [– 0 0 0] [+ 0 0 0] 7 [0 + + +] [– + + +] [+ – – –] 
1 [– 0 – –] [0 – 0 0] [0 + 0 0] 6 [+ 0 + +] [+ – + +] [– + – –] 
2 [– – 0 –] [0 0 – 0] [0 0 + 0] 5 [+ + 0 +] [+ + – +] [– – + –] 
3 [– – – 0] [0 0 0 –] [0 0 0 +] 4 [+ + + 0] [+ + + –] [– – – +] 

sum [0 0 0 0] [– – – –] [+ + + +] sum [0 0 0 0] [– – – –] [+ + + +] 
 

 

These two primary and dual basis sets (identified by corners) form dual non-overlapping 

tetrahedrons overlaid inside the 3D cube, where the dual(Pk) = P7-k and the dual(Rk) = R7-k. 

The tetrahedrons shown in Figure 4.22 are geometrically interesting because they represent 

four equally spaced points, which define six equal- length lines formed by pairs of diagonals 

on the opposite six faces of the cube. As will be shown geometrically, the row-decode Rk and 

projection operators Pk represent oriented planes which form the four unique sides of the two 

tetrahedrons, each of which possesses two orientations. 
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Figure 4.22: Sides of dual tetrahedrons form P0-3 on left and duals P7-4 on right for G2 

 

The primary tetrahedron related to P0-3 contains the corner (– a0 – a1 – a0 a1). The dual 

tetrahedron related to P7-4 is formed by the major axis pointing to the opposite corners and 

contains the corner (+ a0 + a1 + a0 a1). See Table 4.14 for a summary of the geometric 

elements with Cartesian length 2  for sides between any two tetrahedron corners. 

 

Table 4.14: Eigenvectors EK are major axes that form Dual Tetrahedrons in G2 

Geometric Features Primary Tetrahedron Dual Tetrahedron 
Ek Basis →  Corner 1 E0 = + a0 + a1 – a0 a1 = [0 - - -] E7 = – a0 – a1 + a0 a1 
Ek Basis →  Corner 2 E1 = + a0 – a1 + a0 a1 = [- 0 - -] E6 = – a0 + a1 – a0 a1 
Ek Basis →  Corner 3 E2 = – a0 + a1 + a0 a1 = [- - 0 -] E5 = + a0 – a1 – a0 a1 
Ek Basis →  Corner 4 E3 = – a0 – a1 – a0 a1 = [- - - 0] E4 = + a0 + a1 + a0 a1 
Front side = + a0 a1 (+ a0 – a1) →  Corner 2 (+ a0 + a1) →  Corner 4 
Back side = – a0 a1 (– a0 – a1) →  Corner 4 (+ a0 – a1) →  Corner 3 
Top Side  = + a1 (– a0 + a0 a1) →  Corner 3 (– a0 – a0 a1) →  Corner 2 
Bottom Side  = – a1 (– a0 – a0 a1) →  Corner 4 (+ a0 – a0 a1) →  Corner 3 
Right Side  = + a0 (– a1 + a0 a1) →  Corner 2 (+ a1 + a0 a1) →  Corner 4 
Left Side  = – a0 (+ a1 + a0 a1) →  Corner 3 (+ a1 – a0 a1) →  Corner 2 
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The equations for the major axes represent an oriented line with Cartesian distance 3  

passing thru the [0000] center, pointing toward (→ ) the corner and pointing away from the 

complement of that corner. Likewise, the diagonals for each side represent a line length of 

2  pointing at (→ ) the same corners. Although line orientations are arbitrary, Figure 4.22 

uses three line segments pointing away from corner 1 while the other three lines are joined 

head-to-tail- to-head to form a plane whose right-hand orientation points toward corner 1. 

 

The side multivectors in Table 4.14 are multiplied in pairs to form bivectors or oriented 

planes, which represent the projection and row-decode operators. The remaining 

combinations produce five duplicates of P0-3 and R0-3 and twelve additional combinations are 

variations of P7-4 and R7-4. Other vector orientations define the same planes but for different 

combinations and orientations of vectors. Multiplying the sides in opposite order effectively 

inverts the orientation of the sides which is equivalent to taking the orientation of the same 

side in the dual tetrahedron. This can be succinctly expressed as: if Rk = (Side1)(Side2), then 

the order R7-k = (Side2)(Side1) and likewise, if Pk = (Side1)(Side2), then P7-k = (Side2)(Side1), 

where Side2 and Side1 are multivectors. These relationships are illustrated in the Table 4.15. 

 

Table 4.15: Computational Operators encoded as geometric products for G2 

Computation Plane Primary Tetrahedron Dual Tetrahedron Equation Label 
P0 = [– 0 0 0] = (Front)(Top) = (Left)(Bottom) {– + + –} 
P1 = [0 – 0 0] None for orientations = (Front)(Top) {+ – + –} 
P2 = [0 0 – 0] = (Left)(Top) None for orientations {+ + – –} 
P3 = [0 0 0 –] = (Front)(Bottom) = (Back)(Top) {– – – –} 
R0 = [+ 0 0 0] = (Right)(Front) = (Back)(Bottom) {+ – – +} 
R1 = [0 + 0 0] = (Right)(Back)   = (Left)(Front) {– + – +} 
R2 = [0 0 + 0] = (Back)(Top) = (Front)(Bottom) {– – + +} 
R3 = [0 0 0 +] = (Left)(Bottom) = (Right)(Top) {+ + + +} 
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So, geometrically, the row-decode and projection operators represent oriented planes which 

form the four sides of the two tetrahedrons, each of which possesses two orientations. These 

planes are oriented at 45° angles off the three separate axes, because the tetrahedron sides are 

all equilateral triangles based on the diagonals of three sides of a cube.  

 

The multivector eigenvectors Ek require additional comment. Even though all the other 

properties appear to be true for the Ek eigenvectors, due to the topology of the tetrahedrons, it 

is clear that the Ek are only pair wise 0 3 1 2 0E E E E= =i i  orthogonal (see axis shading in 

Figure 4.21). The four major diagonals of a cube cannot be orthogonal to each other because 

a cube is spanned by only three axes. Additionally, these diagonals are perpendicular to the 

tetrahedron sides, which intersect at an angle less than 90° to form the tetrahedron. So even 

though the overall size of the space is N = 4, the eigenvectors only occupy a space of N–1 = 

3. By computing the inner product between all pairs of projection operators we find 

0j kP P ≠i  except for 0 3 1 2 0P P P P= =i i . Also the three main axes of the cube are not 

orthogonal because ( ) 0≠a a bi  and ( ) 0≠b a bi . These orthogonality constraints for 

eigenvectors and projection operators need to be studied further. 

 

Another interesting point is that the eigenvectors Ek are effectively out-of-phase notch filters 

where the projection and row-decode operators match each notch. This is related to the 

spectral decomposition characteristics of projection operators expressed using eigenvectors, 

and implies that the eigenvectors form the Fourier basis, as well as the computational basis. 

Given eigenvectors Ek and projectors Pk, then any symmetric operator S  can be written as 

the sum k k
k

Pλ= ∑S , where { },0,kλ ∈ − +  are the eigenvalues of the eigenvector Ek. As can 
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already be seen, this is the form for any expression in G2 denoted as [ ]0 1 2 3λ λ λ λ− − − −  

because the current vector notation is actually being expressed as k k k k
k k

R Pλ λ= = −∑ ∑S . 

 

Using the row-decode vector notation and standard sort order to illustrate the spectral 

properties of Ek in G2, the left-most vector acts like a low frequency pattern and each vector 

following in the sorted order doubles that frequency, so + a0 = [– – + +] and + a1 = [– + – +] 

while inversion creates an out-of-phase pattern – a0 = [+ + – –] and – a1 = [+ – + –].  

 

Eigenvectors and eigenvalues were explored here because they are related to quantum 

measurement, the Boolean decode of row states, and may be required to design arbitrary 

operators for Gn. This analysis also appears to be relevant for larger Gn because the row-

decode primitives Rk are all product combinations of small idempotent operators. This 

concludes a brief introductory section on eigenvectors and eigenvalues, to show the 

mathematical relationship of Ek to the topologically derived Rk and Pk used in this research. 

4.8 Determinants in Geometric Algebra  

Computing the scalar-valued determinant of a geometric algebra multivector expression X is 

valuable because it captures important properties of X in a basis- invariant manner.  If 

det(X)=0, then the expression X is defined as singular and the multiplicative inverse 1/X is 

undefined because computing 1/X uses the determinant in the denominator (i.e. 1/det(X)) as a 

volume scaling factor. Using the gasolve.pl tool for vector x, several cases of the form X = 

(±1±x) have been discovered where 1/X is not defined, which implies det(±1±x) must be 0. 
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Another fact that will be shown later is that none of the operators Pk and Rk have defined 

multiplicative inverses, which mathematically means their determinants must also be zero. In 

general for Gn, det(Pj)det(Pk) = det(Pj Pk), which means det(Pj Pk) = 0 if the determinant of 

any of its factors is zero. So even without defining how to analytically compute the 

determinant, this implies that the Pk and Rk for all larger spaces must also have det(Pj Pk) = 0 

because det(Pj) = det(Pk) = 0. 

 

Conversely, the non-singular cases are defined for det(X) ≠  0, which means that 1 1X X− =  

exists and the operator is reversible. Since the only scalar values defined for Gn are {–1, 0, 

+1}, all non-singular multivectors X are unitary because they have the property det( ) 1X =  

(Exercise 6.5.2 on page 309 in [7]). This property of unitary operators is actually derived 

from the formal definition of unitary, which is 1 * *( ) ( )T TX X X− = =  where *X  is the 

complex conjugate, TX  is the transpose and 1X −  is dependent on 1/det(X). So we have 

shown that all non-singular expressions in Gn are unitary even though the operators *X  and 

TX  have not been defined. These operators are namely unnecessary in Gn because the 

complex conjugate is related to complex numbers and the transpose is defined only for 

matrices. Unitary operators are Hermitian if they have the property *( )TX X= , which is true 

only for eigenvectors, because 1 *( )TX X X−= =  or 2 1X =  (page 3 in [25]). 

 

The singular cases were found by searching with gasolve.pl, but it is also possible to compute 

1X −  analytically by expressing the determinant for orthonormal vectors ai and bj to form a 
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matrix (i x j) with entries ij i jα = a bi  which is equivalent to the inner product expression 

det( ijα ) = det( i ja bi ) = 1 1( ... ) ( ... )n n∧ ∧ ∧ ∧a a b bi . This expression can be expanded out into 

the equivalent Laplace expansion of the inner product, but this has the same computational 

complexity problems as computing the determinant for Hilbert spaces. An alternative 

approach for computing 1X −  would be to find the Gn equivalent of *X  and TX . 

4.9 Summary of Logic in Geometric Algebra  

The foregoing analysis results are both novel and quite remarkable. With the help of some 

custom tools, it has been shown that any Gn=2 can represent any Boolean logic as linear 

expressions using only addition and multiplication. The symmetric three-valued choice of {–, 

0, +} allows a separate undefined state, independent of the two Boolean logic values, which 

is semantically similar to the undriven state from tristate logic. The extra “0” state enables 

the linear independence of decode states and is illustrated in the Karnaugh map in Table 4.16. 

 

Table 4.16: Linear Independence of Decode States in Karnaugh Map for G2 = span{a, b} 

 – b + b 

– a row decode 002 = A– – = 
(1 – a)(1 – b) = [+000] 

row decode 012 = A– + = 
(1 – a)(1 + b) = [0+00] 

+ a row decode 102 = A+ – = 
(1 + a)(1 – b) = [00+0] 

row decode 112 = A+ + = 
(1 + a)(1 + b) = [000+] 

 
 

In traditional Karnaugh maps where values {+, –} are assigned to {1, 0}, the logic inclusive 

OR combines terms in a linearly independent fashion, which is evident when engineers use 

“+” to denote logic OR. Likewise, when using states {–, 0, +}, with the meaning of state “0” 
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being “cannot occur,” individual row/states of a decode table are similarly linearly 

independent, but the AND decode expression (–1)2(1±a)(1±b) for each cell is more complex 

and related to the idempotent projection operators and eigenvectors.  

 

The ability to express reversible logic operators in a finite linear space using addition and 

multiplication operators does not come for free. In a vector space Gn, when n is large, the 

total number of elements required for maximum selectivity (a single row) grows as N=2n and 

the number of operator combinations grows as 3N. Even though these (N-n-1) linearly 

independent higher-rank dimensions exist separately from the n input vectors, they are all 

interlocked via addition as co-occurrences to form a time- independent self-consistent whole.  

Maintaining self-consistency for an arbitrarily large system indicates this encoding is 

equivalent to a singularity (outside normal spacetime), otherwise spacetime segregation 

would disrupt any consistency. These ideas are synonymous with the idealized simultaneity 

principles of co-occurrence and with the concept of quantum-gravity-as-entropy from black 

hole mechanics mentioned earlier.  

 

As proven earlier, traditional Boolean logic operators cannot be expressed in a reversible 

linear space unless embedded into a higher dimensional space. With the above reasoning, 

building classical computers with GA-based logic is not practical because of the large circuit 

resources implied. Fortunately, such expanded linear spaces are exactly what are required for 

representing quantum computing, which leads to the topic of Chapter Five! 
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CHAPTER 5  

SINGLE QUBIT REPRESENTED IN GEOMETRIC ALGEBRA 

 

5.1 Qubit as Co-Occurrence of Two States 

Much of the research in geometric algebra entails mapping known mathematical properties 

into its domain; the same approach is taken here. A qubit state is traditionally defined in a 

Hilbert space as the sum of two complex numbers (H2) represented in Dirac’s ket notation 

for vectors ( 0 1φ α β= + , where ,α β ∈C  and 
2 2

1α β+ = ) [15]. Topologically this 

represents a four-dimensiona l, real-valued space. The best-explored two-level quantum 

system is the spin-½ particle that contains the two basis states: spin-up (using the notation 

↑  or 0 ) and spin-down (using the notation ↓  or 1 ). The basis 0  and 1  can be 

observed and represents classical (i.e. non-superimposed) bit states.  

 

Based on this understanding, a qubit can be represented in geometric algebra. A qubit A 

contains two bit states that can occur simultaneously (denoted as orthonormal basis vectors 

{a0, a1} generating G2). That is, a concrete computational bit is now viewed as potentially 

having simultaneously values of both logic states “0” and “1.” Co-occurrence and G2 

principles dictate this can be expressed very simply as the sum of the two independent state 

vectors of 2
−G . 

qubit A = (± a0 ± a1)                                                       (5.1) 
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This deceptively simple expression is extremely meaningful. It is evident, for example, that a 

vector set in G2 generates (or spans) a linear space with dimension N = 22 = 4 and contains 

the elements {±1, a0, a1, a0 a1}. The size of this space exactly matches the number of 

dimensions in H2. As Figure 5.1 shows, the next step explores the meaning of the sign in 

front of each vector using the ga.pl evaluator tool. 

 

Input expression is (a0 + a1)       è = R0 - R3 = P3 – P0 
INPUTS: a0 a1 | + a0 + a1 | OUTPUT 
**************************************************************** 
ROW 00: - - | - - | + both OFF encoded as + = R0 
ROW 01: - + | - + | 0 values cancel which means "cannot occur" 
ROW 02: + - | + - | 0 values cancel which means "cannot occur" 
ROW 03: + + | + + | - both ON  encoded as - = P3 
**************************************************************** 
Row counts for outputs of ZERO=2, PLUS=1, MINUS=1 for TOTAL=4 rows. 

 

Figure 5.1: Qubit as Co-occurrence of 2
−G  state vectors 

 

The result segregates the outputs into two groups where either (1) both states have the same 

value or (2) both states are opposite.  To study the situation with only one state ON at a time 

(where one state is + and other is –), Figure 5.2 shows the state difference (+ a0 – a1). Notice 

how both phases can be expressed as a pair wise difference 0 3P P−  and 1 2P P− , but 

remember from end of section 4.7 that these sets are pair wise orthogonal: 0 3 1 2 0P P P P= =i i . 

 

Input expression is (a0 - a1)    è = R1 – R2 = P2 – P1 
INPUTS: a0 a1 | + a0 - a1 | OUTPUT 
**************************************************************** 
ROW 00: - - | - + | 0 values cancel which means "cannot occur" 
ROW 01: - + | - - | + a1 ON encoded as + = R1 
ROW 02: + - | + + | - a0 ON encoded as - = P2 
ROW 03: + + | + - | 0  values cancel which means "cannot occur" 
**************************************************************** 
Row counts for outputs of ZERO=2, PLUS=1, MINUS=1 for TOTAL=4 rows. 

 

Figure 5.2: Qubit State Difference produces Classical States in 2
−G  
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Using the co-occurrence interpretation, Figure 5.1 and Figure 5.2 suggest that two separate 

modes exist, each excluding the other’s valid states. Using the {True, False} →  {+, –} 

mapping, then +a0 means “state a0 is ON” and –a0 means “state a0 is NOT ON.” Therefore, 

we will use the anti-symmetric sum (state difference or opposite signs) to represent the two 

classical states, and the symmetric sum (both same sign) to represent the superposition states 

from quantum mechanics. Table 5.1 summarizes this interpretation of these bimodal results, 

and these two modes are generally called the two phases of the qubit. Notice how addition is 

used in both in G2 and H2 representations to deno te the linear combination of independent 

states, i.e. co-occurrence is the computational way of expressing linear combinations. 

 

Table 5.1: Summary of Qubit State Meaning  

Mode or Phase Qubit State State Meaning Corresponding Hilbert States 

A0 = (+ a0 – a1) a0 ON  a1 OFF 01001 =+  opposite states 
are classical A1 = (– a0 + a1) a0 OFF  a1 ON 11100 =+  

A+ = (+ a0 + a1) a0 ON  a1 ON )01(21 +  like states in 
superposition A– = (– a0 – a1) a0 OFF a1 OFF 1 2 ( 1 0 )−  

 
 

The topological meaning of the multivectors in the 4D space will be explored in Section 5.5. 

Both algebras use values {–1, 0, +1} but with slightly different interpretations. The GA 

approach appears to support a mathematically and visually simpler approach to expressing 

qubits with real-valued GA vectors, than the complex-valued Hilbert space coefficients using 

the ket notation. 
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5.2 Pseudoscalar is Spinor Operator 

The states 2
−G  = {a0, a1} define both a plane and the pseudoscalar SA = (a0 a1), which acts 

like a spinor on that plane. The spinor works independently on each vector in a sum and 

Table 5.2 summarizes the right-handed application of the spinor on every vector and qubit 

state. The primary conclusion from Table 5.2 is that the spinor action switches between the 

classical and superposition phases. This action is identical to the quantum Hadamard gate. 

 

Table 5.2: Summary of Spinor SA = (a0 a1) Action on Qubit States in 2
−G  

Start Phase Qubit State Each times spinor Final State Final Phase 

+ a0 – a1 +a0 (a0 a1) = +a1 + a0 + a1 
Classical 

– a0 + a1 –a0 (a0 a1) = –a1 – a0 – a1 
Superposed 

+ a0 + a1 +a1 (a0 a1) = –a0 – a0 + a1 
Superposed 

– a0 – a1 –a1 (a0 a1) = +a0 + a0 – a1 
Classical 

 
 

5.3 Hadamard Transform 

The Hadamard transform is a crucial gate in quantum computing because it is used to convert 

a known classical state (usually 0 ) into a superposition state. This is often the first step in a 

quantum computation. The best way to visualize how the Hadamard (or spinor) transform 

affects the qubit states is to place the states on a plane diagram such as the one shown in  

Figure 5.3. Since the right-handed spinor rotates any state counter-clockwise by 90°, it also 

rotates any sum of states by that amount. A spinor rotation moves a qubit state by 90° to the 

next counter-clockwise corner of the plane, thereby alternately swapping between classical 

and superposition phases. The two ellipses indicate the 180° rotation produced by inversion.  
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Figure 5.3: Illustration of Qubit States for 90° and 180° Rotations 

 

It is now geometrically obvious why multiplying twice times a spinor SA produces an 

inversion and reinforces the reason why the pseudoscalar I is equivalent to the unit imaginary 

1A i NOT= = − =S  [8], since SA SA = ( )2
1−  = –1.  The spinor is identical to the 

Hadamard transform in 2
−G  because the representation contains all the grade-1 vectors 

1
A  

while the pseudoscalar is grade-2 
2

A , so their product always returns a grade-1 result: 

1 2 1
A A A=  in G2. This will be important later when it is shown that alternate basis 

states can be selected.  

 

5.4 Pauli Spin Matrix Transforms  

The three Pauli spin matrices 1 2 3{ , , }σ σ σ  are traditionally important in any treatment of 

quantum mechanics because, for H 2, every 2X2 Hermitian matrix (containing only off-

diagonal elements) can be expressed as a linear combination of the Pauli spin matrices and 

the unit matrix us ing the following matrix equation (not in GA). The matrix equations (5.2) 

assumes the standard basis set { 0 , 1 }  in H 2, where b* is the complex conjugate of b. 



 91 

* *
1 2 3*

1 1 1 1
( ) ( ) ( ) ( )

2 2 2 2
1a b

a d b b i b b a d
b d

σ σ σ
 

= + + + − + − 
 

+  

(5.2) 

Where 
1 2 3

1 0 0 1 0 1 01 , , ,
0 1 1 0 0 0 1

i
i

σ σ σ
       
       
              

−= = = = −
 

 

Every physically observable quantity in quantum mechanics corresponds to a Hermitian 

operator and can be expanded as Pauli matrices. Likewise, any possible unitary evolution in 

a quantum state due to noise can also be characterized using Pauli matrices [7].  

 

The inspiration to use the interpretive labels for the various kinds of noise was the key to 

mapping the Pauli matrices into GA as follows. The three kinds of noise: bit flip, phase flip, 

and simultaneously both bit and phase flips, are illustrated with examples in the three cases 

and equations (5.3), (5.4), and (5.5): 

 

1) Bit flip error: 1σ causes the overall states to flip flop, which is the action of inversion. 

Case Hilbert notation Use case GA equivalent is (–1) or inversion  

[a] 1 0σ → 1  [a] (+ a0 – a1)(–1) →  (– a0 + a1) 

[b] 1 1σ → 0  [b] (– a0 + a1)(–1) →  (+ a0 – a1) 
(5.3) 

 
The GA inversion operator has the same meaning as 1σ  (also used in control-not gate in H2) 

2) Phase flip error: 3σ causes a single state (a1) to flip sign, which is the action of a spinor. 

Case Hilbert notation Use cases GA equivalent is (a0 a1) or spinor  

[a] 3 1σ →  1−  [a]&[b] (a0 + a1)(–a0 a1) →  (+ a0 – a1) 

[b] 3 0σ → 0  

[c] 3 1σ− → 1  [b]&[c] (a0 – a1)(a0 a1) →  (+ a0 + a1) 

(5.4) 
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3) Both bit and phase flip error: 2σ includes both bit and phase flip errors simultaneously, 

which is the co-occurrence of the preceeding two operators. The shared cases are 

highlighted in all three tables.  

Case Hilbert notation Use cases GA equivalent is (–1 + a0 a1) = PA  

[a] 2 0σ →  +i 0  

[b] 2 1σ →  –i 1  
[a]&[b] (a0 – a1)(–1 + a0 a1) →  –a1 (5.5) 

 

This result is unexpected because the sum of + a0 and – a0 cancels, producing only a single 

vector, instead of the expected complicated state as found in H2. The meaning of this result 

is addressed in the next section, on alternative basis sets. We can nevertheless conclude with 

the strong and positive result that the GA representation of a single qubit contains equivalent 

mappings for the Pauli spin matrix operators.  

5.5 Alternative Basis Sets  

Up to this point in the discussion, the qubit representation uses the so-called standard basis 

states, written as the sum of vectors of 2
−G . Mathematically speaking, basis vectors are hard 

to grasp unless they are embedded in a geometric context. Simply stated, basis vectors define 

an intrinsic orientation or reference frame from which the internal states may be observed 

externally, thereby providing a mechanism for quantum measurement. 

 

In H2, the default standard basis of spin-up 0  and spin-down 1  get their names because 

a spinor is equivalent to a top oriented in a three-dimensional space. If the top is spinning 

using the right hand rule, then the direction the thumb points (up or down) determines the 

label. Using the Hadamard Transform, the standard basis states can be reoriented 
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( 0 0 'H =  and 1 1'H = ) into the dual basis (also Hadamard or Fourier basis) shown 

in equation (5.6) and vice versa ( 0 ' 0H =  and 1' 1H =  see Figure 5.4). The H2 

standard and dual bases are identical to the classical and superposition definitions in our 

qubit representation. 

1 1
0 ' 1 2 0 1 1 2 , 1' 1 2 0 1 1 2

1 1
   

=  +  = =  −  =       −   
            

 (5.6) 

Using this approach in our GA qubit representation, the classical states could be labeled left-

diagonal and the superposition states labeled right-diagonal, which are equivalent to the 

standard and dual bases respectively (cf. Figure 5.4).  However, there are three different 

versions of the Hadamard transform for the various bases in H2, but not for GA. A circular 

polarization basis is also defined for a qubit as

 

0'' 1 2 0 1 , 1'' 1 2 0 1i i=  +  =  −     , 

which are simply defined for GA in Table 5.3 using the even grade plane (±1±a0 a1). 

 

Relying on the geometric roots of G2, it is easy to comprehend all of these bases for a qubit. 

This understanding becomes apparent when a qubit state (only odd grade terms 2
−G ) is 

multiplied by (–1 + a0 a1) containing only even grade terms 2
+G . Table 5.3 examines all the 

possibilities of grade changes due to various operators of the same grade, which thus defines 

the basis states. A meaningful label for each basis is provided in the top row of the table. 

 

The key to this table is that the odd grade vectors 2
− =G {a0, a1} define a plane and also 

implicitly define the even grade plane 2
+ =G {±1, a0 a1}. In 2

−G , the vertical/horizontal or 

Pauli bases are on-axis while the left-diagonal basis (standard) and right-diagonal basis 



 94 

(dual) define the 45° off-axis encodings. Likewise in 2
+G , the direct basis forms the on-axis 

encoding, while the 45° off-axis is the circular basis. The direct basis result is either an 

invariant (constant ±1) or a spinor which seems similar to an actual measurement but is 

reversible and this will be used later in the Toffoli gate derivation. Any basis is equivalent to 

any other, since any choice is reversible to the starting basis by multiplying by the 

multiplicative inverse (see 2nd last row in Table 5.3). 

 

Table 5.3: Alternative Reversible Basis Encodings for Qubit A in G2 

Basis Label è Stand/Dual Pauli = Ver/Hor Circular Direct 

Conversion è Start state A A (–1 + a0 a1) = A (a0) = A (+ a0 – a1) = 

+ a0 – a1 – a1 (+1 + a0 a1) –1 classical 0  
classical 1  – a0 + a1 + a1 (–1 – a0 a1) +1 

+ a0 + a1 + a0 (+1 – a0 a1) + a0 a1 superposition + 
superposition – – a0 – a1 – a0 (–1 + a0 a1) – a0 a1 

Return to starting state è Pauli (1 + a0 a1) Cir (a0) Dir (– a0 + a1) 
Cartesian dist from start è 1 1=  4 2=  3  

 
 

An exhaustive analysis of every same-grade basis in G2, by consecutive spinor applications 

rotating thru all four states, reveals that an even grade spinor always acts as a Hadamard 

transform. Even grade inversion also works for any Gn, therefore the Pauli spin operators all 

function as before. Making a real measurement depends on what basis state the system is in, 

which means a given state is defined inside a particular basis. Mixed grade bases (such as 

+a0 + a0 a1) are NOT viable basis choices because the states are NOT reversible since they 

contain a singular factor 1+a1. Also, the trine basis operators of the form X = (1±a?±a0 a1) 

are solutions to the equality (X)3 = 1 so are 120° apart and are invertible because X –1 = X 2. 
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As the discussion of the product of multiple qubits will reveal, the choice of (± a0 ± a1) as 

the representation of qubits was fortunate, but also one might argue, in favor of it as the 

obvious approach in GA. Note that the Vertical/Horizontal basis encoding is also shown as a 

way of encoding both noise states (i.e. a0 and a1 in Eq (5.5) using the Pauli spin operator. 

 

Figure 5.4: On-axis and Off-axis Bases for 2
−G  on left and 2

+G  on right 

 

Now we will shift gears and discuss the result of using the irreversible projection operators 

Pk, which define the computational basis. The standard and computational bases are identical 

in H2 but distinct in G2. This difference occurs because multiplication is AND-like in H2 

but XOR-like in G2. The corresponding AND-like decode of states in G2 is identical to the 

row-decode formulas, and represent linearly independent states of the smallest topological 

features.  Table 5.4 shows all the computational basis transformations starting from the 

standard and dual states. If the multiplicative order of the operators is swapped, then the dual 

of this table is created where all stand-alone terms of  ( )1± ± a1  are replaced with ( )1± ± a0 .  
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Table 5.4: Computational Basis Measurement (A)(1 ± a0)(1 ± a1) for G2 

Start State A A(1+a0)(1–a1)= A(1–a0)(1+a1)= A(1+a0)(1+a1)= A(1–a0)(1–a1)= 

A0 = + a0 – a1 – 1 + a1 = +I  + 1 + a1 = −I  – a0 (+ 1 + a1) a0 (– 1 + a1) 
A1 = – a0 + a1 + 1 – a1 = −I  – 1 – a1 = +I   – a0 (– 1 – a1) a0 (+ 1 – a1) 

A+ = + a0 + a1 – a0 (+ 1 – a1) a0 (– 1 – a1) – 1 – a1 = +I   + 1 – a1 = −I   
A– = – a0 – a1 – a0 (– 1 + a1) a0 (+ 1 + a1) + 1 + a1 = −I  – 1 + a1 = +I  

End state => A => A0 A => A1 A => A+  A => A– 
Operator Label  Classical Measurement  Superposition Measurement 
Return Operator NO return because multiplicative inverse does not exist for (±1±a1) 
 

 

Several new ideas are introduced in the Table 5.4 that are important for computational basis 

measurements or transformations for any Gn. The primary idea is that the results ±I  in the 

table represent a class of sparse invariant operators where the invariant identity state +I  =  

(–1 ± a1) contains only state values {+, 0} and the invariant inversion state (+1 ± a1) = −I  

contains only state values {–, 0} as shown in the Table 5.5. The A Rk results represent the 

answers, where the qubit state is changed to the end state, which is a many-to-one mapping. 

 

Table 5.5: Sparse Invariant States ±I  for G2 

 
 Phase 1 invariant using A1 and A0 Phase 2 invariant using A0 and A1 

−I  

Input is (- a0 + a1)(1 + a0)(1 - a1) 
INPUTS: a0 a1 | + 1 - a1 | OUTPUT 
********************************* 
ROW 00: - - | + + | - 
ROW 01: - + | + - | 0 
ROW 02: + - | + + | - 
ROW 03: + + | + - | 0 
************************************* 

Input is (+ a0 - a1)(1 - a0)(1 + a1) 
INPUTS: a0 a1 | + 1 + a1 | OUTPUT 
************************************* 
ROW 00: - - | + - | 0 
ROW 01: - + | + + | - 
ROW 02: + - | + - | 0 
ROW 03: + + | + + | -
************************************* 

+I  

Input is (+ a0 - a1)(1 + a0)(1 - a1) 
INPUTS: a0 a1 | - 1 + a1 | OUTPUT 
************************************* 
ROW 00: - - | - - | + 
ROW 01: - + | - + | 0 
ROW 02: + - | - - | + 
ROW 03: + + | - + | 0 
************************************* 

Input is (- a0 + a1)(1 - a0)(1 + a1) 
INPUTS: a0 a1 | - 1 - a1 | OUTPUT 
************************************* 
ROW 00: - - | - + | 0 
ROW 01: - + | - - | + 
ROW 02: + - | - + | 0 
ROW 03: + + | - - | + 
************************************* 
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For any grade m-vector X, all multivector states of the form (±1 ±X) = ±I  are invariant 

because the addition operator with ±1 selects the matching values. These single qubit 

invariant states are identical to properties of the invariants found for the Bell and magic 

operators for two qubits. Table 5.5 also shows how the sum of the two phases equals either 

+1 or –1 so it represents a sparse ±1 result for some operators. 

 

The next idea is that the products (1 ± a0)(1 ± a1) are non-reversible because they introduce 

a loss of state information due to the many-to-one mapping. Because the Rk are singular the 

qubit is forced to the corresponding end state. Also, the odd grade operators are not 

commutative, so applying them causes a phase change; a1 (1 + a0)(1 + a1)=(1 – a0)(1 + a1). 

Additionally no multiplicative inverse exists for (1 ± a0) or (1 ± a1) which is verified with 

gasolve.pl tool, so the previous state cannot be restored using an invertible operator. 

 

gasolve.pl "a0,a1" "(1 - a0)(X)" "1" è Attempted 80 with 0 found. 
gasolve.pl "a0,a1" "(1 + a0)(X)" "1" è Attempted 80 with 0 found.  (5.7) 
gasolve.pl "a0,a1" "(1+a0)(1+a1)(X)" "1" è Attempted 80 with 0 found. 

 

No operators exist to undo any of the products of the computational basis Rk. Searching for 

other operators produce the same result. So although (A+)(1 + a0)(1 + a1) = (–1 – a1) is 

always true, a solution X does not exist for either (–1 – a1)(X) = A+ or (X)(–1 – a1) = A+.  

 

gasolve.pl "a0,a1" "(+ a0 + a1)(X)" "(-1 - a1)" 
Found Match for X = + 1 + a0 + a1 + a0 a1 in (+ a0 + a1)(X) = - 1 - a1 
Attempted 80 with 1 found. 
 
gasolve.pl "a0,a1" "(-1 - a1)(X)" "(+ a0 + a1)"                   (5.8) 
Attempted 80 with 0 found.  
 
gasolve.pl "a0,a1" "(X)(-1 - a1)" "(+ a0 + a1)" 
Attempted 80 with 0 found. 
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The computational basis operators perform an irreversible measurement, because they 

destroy qubit information due to the many-to-one mapping, but also seen as breaking the co-

exclusion state-symmetry in answer (primitive states are not orthogonal 0 2 1 30P P P P≠ ≠i i ). 

As a result, even though the answer mapping is one-to-one, it is irreversible because the lost 

phase information is irrecoverable. Once the measurement has been made, then the initial 

symmetric phase information is lost in the measurement answer expression.  

 

Table 5.6: Computational Basis Measurement Destroys Qubit Symmetry for G2 

Original states for A1 and A+ States measured with (1 + a0)(1 + a1)  
Input is A1 = (- a0 + a1)  
INPUTS: a0 a1 | - a0 + a1 | OUTPUT 
**********************************  
ROW 00: - - | + - | 0 
ROW 01: - + | + + | - 
ROW 02: + - | - - | + 
ROW 03: + + | - + | 0 
********************************** 

Input is (- a0 + a1)(1 + a0)(1 + a1) 
INPUTS: a0 a1 | + a0 + a0 a1 | OUTPUT 
*************************************  
ROW 00: - - | - + | 0 
ROW 01: - + | - - | + 
ROW 02: + - | + - | 0 
ROW 03: + + | + + | - 
*************************************  

Input is A+ = (+ a0 + a1)  
INPUTS: a0 a1 | + a0 + a1 | OUTPUT 
**********************************  
ROW 00: - - | - - | + 
ROW 01: - + | - + | 0 
ROW 02: + - | + - | 0 
ROW 03: + + | + + | - 
********************************** 

Input is (+ a0 + a1)(1 + a0)(1 + a1) 
INPUTS: a0 a1 | - 1 - a1 | OUTPUT 
*********************************  
ROW 00: - - | - + | 0 
ROW 01: - + | - - | + 
ROW 02: + - | - + | 0 
ROW 03: + + | - - | + 
********************************* 

 
 

Table 5.6 gives two examples of the broken phase symmetry. This same scenario appears in 

the Bell operator for two qubits, where the loss of information is also exactly a phase change.  

5.6 Qutrits for Spin-1 Particles 

A qutrit state is traditionally defined in a Hilbert space as the sum of three complex numbers 

H 3 represented in Dirac’s bra-ket notation as vectors 0 1 2α β λΨ = + + , where 

, ,α β λ ∈C , 
2 2 2

1α β λ+ + = , and the standard basis is { 0 , 1 , 2 } .  The space H3 
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represents eight dimensions (due to Hermitian generators of SU(3)) and represents spin-1 

particles such as photons [15]. 

 

Just as for the qubit, the analogous mapping for qutrit A is the co-occurrence of three vectors 

A = (± a0 ± a1 ± a2) in G3. This mapping forms a linear space of eight dimensions : one 

scalar dimension 
0

A = {±1,0}, three vectors 
1

A = {a0,  a1,  a2}, three bivectors 
2

A =  

{a0 a1,  a0 a2,  a1 a2}, and one pseudoscalar 
3

A = =I  {a0 a1 a2}.  Qutrits are not 

pursued further in this dissertation. 

5.7 Qudit for Hd Quantum Systems  

It is possible to define the states of an arbitrary d-dimensional Hilbert system Hd using the 

corresponding 1-vector d-set in geometric algebra with N=2d equivalent real dimensions. The 

name for such an Hd system is a “qudit.” The primary way of building a large qudit quantum 

system is however to use quantum registers containing d qubits rather than one d-qudit. 

Representing quantum registers in geometric algebra is discussed in the next chapter.  

 

5.8 Phase Shift Transform 

A qubit defines a spinor that is identical to the rigid right-handed spinning top in  

Figure 5.5. The two 1-vectors define the plane of rotation and the orthogonal pseudoscalar 

defines the axis of rotation, thus forming a 3D structure. The n-vectors are all orthonormal so 

this top-structure is always present independent of its orientation in a 3D Euclidean space e3 

(defined by quaternions cf. Chapter Four). 
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Figure 5.5: Spinor in Spin-down, spin-up, and superposition states (from IBM) 

 

Generalized rotations can be defined in any Gn because a spinor represents a rotation-

dilation in a plane defined by some bivector {e1e2}.  The general rotation of a vector “a” 

through an angle θ  (in radians) to a new vector 'a  is achieved by the dual-sided product: 

' R R=a a% ,                                                                 (5.9) 

where R is called a rotor, defined as the sum of a scalar and a bivector using the equations: 

R α β= − 1 2e e  and R α β= + 1 2e e%    (where cos 2α θ= and sin 2β θ= )   (5.10) 

where the reverse R%  and scalars { , }α β  are dependent on ½ the angle θ . This overall angle 

θ  is derived from two half-angle reflections in the plane. The formula requires thinking 

about rotations taking place in a plane rather than around an axis, and works for any grade 

multivector, in any dimension, of any signature. Alternatively, due to the relationship 

between sine, cosine, and exponential, if a unit bivector B̂  is defined by equation (5.11) 

ˆ sin( ) ,B θ= ∧1 2e e   so 2ˆ 1B = − ,                                         (5.11) 

then the rotor components can alternatively be expressed as the familiar exponentials: 

ˆexp( 2)R Bθ= −  and ˆexp( 2)R Bθ=%                                      (5.12) 
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The sum of a scalar and scaled bivector represents a generalized rotor (equivalent to an angle 

and a bivector plane). It is well known from qubit measurement theory that even though a 

qubit has three non-scalar dimensions (with n=2 for N=2n-1) with many possible states, only 

one classical bit of information can be extracted per qubit. The internal phase causes the 

other states to be ind istinguishable from each other as was demonstrated by the alternate 

basis sets earlier in this chapter, where only one basis set can be active per qubit (which 

represents one co-exclusion). 

 

The two classical bit-states are topologically equivalent to a particular qubit state, and its 

inversion, for any choice of basis. All quantum gates reversibly move states around the state 

space by using arbitrary-phase rotors to align the qubit top inside the three-dimensional 

Euclidean space E3  defined by orthogonal spatial dimensions {x, y, z}. Phase gates in 

quantum computing are namely nothing but rotors for arbitrary angles. The quantum 

computing approach is to align the basis (the axis of the top) along some spatial axis, leaving 

the remaining phase angles as the computational resource. A Hadamard gate is simply a 

single sided spinor with a preset angle of θ  = 90°, and can also be expressed as a generalized 

double-sided rotor. Measurement is simply the choice of selecting the “computational basis” 

and applying it as an irreversible operator Rk, which returns the answer as a sparse invariant 

or random ±1 value. This is not to be confused with the reversible “direct basis”, which re-

encodes the qubit a constant ±1 or spinor.  For example, A1 A0 = +1 and A1 A1 = –1, but A1 A+ 

= SA, yet are reversible. Also see Table 7.5 for many examples of reversible basis transforms. 

 

This concludes the chapter on single qubit. Quantum registers will be discussed next. 



 102 

CHAPTER 6  

MULTIPLE QUBITS REPRESENTED IN GEOMETRIC ALGEBRA  

 

6.1 Qubit Interaction in Quantum Register as Tensor Product 

Quantum registers enable the combining of q qubits to form larger Hilbert spaces, defined by 

the tensor product ( )⊗  of 1 2 ... qψ ψ ψ ψ= ⊗ ⊗ ⊗ . Two qubits create an H4 space with 

00 2 01 2 10 2 11 200 01 10 11ψ α α α α= + + +  where 00 01 10 11, , ,α α α α ∈C ; the standard basis 

states are 2 2 2 2{00 , 01 , 10 , 11 }and the unitarity constraint 
2 2 2 2

00 01 10 11 1α α α α+ + + = . 

For a general quantum register containing q qubits with basis { | 0 2 }qB i i i= ∈ ≤ <  and 

unitarity constraint 
2 1

2

0

1
q

i
i

α
−

=

=∑ , the general qubit state of the register is 
2 1

0

q

i
i

iψ α
−

=

= ∑ . The 

number of states for q2
H  grows as 2q  due to the tensor product. 

 

Compared to the complexity of the above definitions, the equivalent 2qG  definition simply 

assumes several multivector qubits {A, B, C, …}, each containing the respective orthonormal 

vector states {a0,a1}, {b0,b1}, {c0,c1}, etc. All the q qubit co-occurrences interact using the 

geometric product. This notation formally defines the quantum geometric algebra Qq=G2q. 

A B C … = (± a0 ± a1)(± b0 ± b1)(± c0 ± c1) …                              (6.1) 
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For a quantum register Q2 with q = 2 qubits, this product of sums definition produces a 

corresponding sum of products expansion, which is identical to the tensor product definition. 

For example, if A+ = (+ a0 + a1) and B+ = (+ b0 + b1), then the product A+ B+ is: 

A+ B+ = (+ a0 + a1)(+ b0 + b1) = + a0 b0 + a0 b1 + a1 b0 + a1 b1                 (6.2) 

The initial qubit representation as a multivector A = (± a0 ± a1) is fortuitous because the goal 

of generating the tensor product ⊗  operator to expand the linear space for quantum 

registers Qq is automatically achieved using the geometric (or outer) product. By choosing 

the co-occurrence of concrete computation vectors as the representation for Q2, the 

geometric product A B naturally and obviously replaces the tensor product operator 

A Bψ ψ ψ= ⊗ . All qubits in this example are in the “+” superposition state and the GA 

evaluator results for Q2 and Q3 are shown in Figure 6.1.  

Input equation is (a0 + a1)(b0 + b1) ç two qubits 
INPUTS: a0 a1 b0 b1 | + a0 b0 + a0 b1 + a1 b0 + a1 b1 | OUTPUT 
**************************************************************** 
ROW 00: - - - - | + + + + | +   è two ways to get + 
ROW 03: - - + + | - - - - | -   è two ways to get - 
**************************************************************** 
ROW 12: + + - - | - - - - | -   è two ways to get - 
ROW 15: + + + + | + + + + | +   è two ways to get + 
**************************************************************** 
Row counts for outputs of ZERO=12, PLUS=2, MINUS=2 for TOTAL=16 rows. 

 
Input expression is (a0 + a1)(b0 + b1)(c0 + c1) ç three qubits 
INPUTS: a0 a1 b0 b1 c0 c1 | + a0 b0 c0 + a0 b0 c1 + a0 b1 c0 + a0 b1 c1  
+ a1 b0 c0 + a1 b0 c1 + a1 b1 c0 + a1 b1 c1 | OUTPUT 
**************************************************************** 
ROW 00: - - - - - - | - - - - - - - - | +  è four ways to get + 
ROW 03: - - - - + + | + + + + + + + + | -  è four ways to get - 
ROW 12: - - + + - - | + + + + + + + + | -  è four ways to get - 
ROW 15: - - + + + + | - - - - - - - - | +  è four ways to get + 
**************************************************************** 
ROW 48: + + - - - - | + + + + + + + + | -  è four ways to get - 
ROW 51: + + - - + + | - - - - - - - - | +  è four ways to get + 
ROW 60: + + + + - - | - - - - - - - - | +  è four ways to get + 
ROW 63: + + + + + + | + + + + + + + + | -  è four ways to get - 
**************************************************************** 
Row counts for outputs of ZERO=56, PLUS=4, MINUS=4 for TOTAL=64 rows. 
 

Figure 6.1: Non-Zero Qubit States for Q2 and Q3 
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Any quantum register in Qq defines a product A B C … of the q 2-co-occurrences {A, B, C, 

…}. When this product is expanded into the sum of products, each product combines one 

state from each qubit to form a total of 2q q-vectors. These q-vectors are semantically 

identical to the 2q basis vectors in q2
H  in that they represent the binary enumerations of all 

the unique vector products. The grade-2q vector for Qq is the pseudoscalar. The grade-q 

vectors always represent the unique middle column in even rows of Pascal’s triangle since 2q 

is always even. Any quantum register Qq contains n = 2q orthogonal vectors and N = 22q = 

4q possible states. As Figure 6.2 and Figure 6.3 illustrate, the last line of each table output 

summarizes the numbers of various states for 4-6 qubits. 

 

ga.pl table "(a0 + a1)(b0 + b1)(c0 + c1)(d0 + d1)" ç four qubits 
Input expression is (a0 + a1)(b0 + b1)(c0 + c1)(d0 + d1) 
INPUTS: a0 a1 b0 b1 c0 c1 d0 d1 | + a0 b0 c0 d0 + <SNIP> + a1 b1 c1 d1 | OUTPUT 
********************************************************************** 
ROW 000: - - - - - - - - | + + + + + + + + + + + + + + + + | + 
ROW 003: - - - - - - + + | - - - - - - - - - - - - - - - - | - 
********************************************************************** 
ROW 012: - - - - + + - - | - - - - - - - - - - - - - - - - | - 
ROW 015: - - - - + + + + | + + + + + + + + + + + + + + + + | + 
********************************************************************** 
ROW 048: - - + + - - - - | - - - - - - - - - - - - - - - - | - 
ROW 051: - - + + - - + + | + + + + + + + + + + + + + + + + | + 
********************************************************************** 
ROW 060: - - + + + + - - | + + + + + + + + + + + + + + + + | + 
ROW 063: - - + + + + + + | - - - - - - - - - - - - - - - - | - 
********************************************************************** 
ROW 192: + + - - - - - - | - - - - - - - - - - - - - - - - | - 
ROW 195: + + - - - - + + | + + + + + + + + + + + + + + + + | + 
********************************************************************** 
ROW 204: + + - - + + - - | + + + + + + + + + + + + + + + + | + 
ROW 207: + + - - + + + + | - - - - - - - - - - - - - - - - | - 
********************************************************************** 
ROW 240: + + + + - - - - | + + + + + + + + + + + + + + + + | + 
ROW 243: + + + + - - + + | - - - - - - - - - - - - - - - - | - 
********************************************************************** 
ROW 252: + + + + + + - - | - - - - - - - - - - - - - - - - | - 
ROW 255: + + + + + + + + | + + + + + + + + + + + + + + + + | + 
********************************************************************** 
Row counts for outputs of ZERO=240, PLUS=8, MINUS=8 for TOTAL=256 rows. 
 

Figure 6.2: Non-Zero Qubit States for Q4 
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ga.pl table "(a0 + a1)(b1 + b0)(c0 + c1)(d0 + d1)(e0 + e1)" ç 5 qubits 
Input expression is (a0 + a1)(b1 + b0)(c0 + c1)(d0 + d1)(e0 + e1) 
INPUTS: a0 a1 b0 b1 c0 c1 d0 d1 e0 e1 | + a0 b0 c0 d0 e0 + <SNIP> |OUTPUT 
**************************************************************** 
ROW 0000: - - - - - - - - - - | - ... 30 ... - | + 
<SNIP>  
ROW 1023: + + + + + + + + + + | + ... 30 ... + | - 
**************************************************************** 
Row counts for outs of ZERO=992, PLUS=16, MINUS=16 for TOTAL=1024 rows. 
 
ga.pl table "(a0 + a1)(b1 + b0)(c0 + c1)(d0 + d1)(e0 + e1)(f0 + f1)"ç6 qubits 
***************************************************************** 
ROW 0000: - - - - - - - - - - - - | + + ... 60 ... + + | + 
<SNIP>  
ROW 4095: + + + + + + + + + + + + | + + ... 60 ... + + | + 
***************************************************************** 
Row counts for outs of ZERO=4032,PLUS=32, MINUS=32 for TOTAL=4096 rows. 
 

Figure 6.3: Non-Zero Qubit States for Q5 and Q6 

 

If the qubit state for each pair {a0,a1} etc. is analyzed in Figure 6.2 and Figure 6.3, the only 

decoded non-zero states are the superposition states {A+, A–, B+, B–}. This is easy to 

comprehend because the two zero-valued states per qubit (from compact left-side product of 

sums format) should persist in the corresponding right-side expanded sum of product 

equation format. For any row states in a multivector where A = 0, then it always follows that 

A B C = 0. Therefore, this zero-valued state propagation must persist for any quantum 

register Qq.  

 

The number of null states for Qq grows as 4q–2q because the overall state space grows 

exponentially as N = 22q = 4q while the number of non-zero states grows slower as 2q. After 

only 16 qubits, the valid states are less than 0.01% of the overall state space. Figure 6.4 and 

the discussion that follows provide the intuition and proof for how such a large number of 

zero-valued states can persist and be consistently represented in the full sum of products 

format. This proof is dependent on addition cancellation properties that produce zero values. 
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6.2 Propagation of Null States  

All the intermediate product terms from the previous tables produce the same sign (either all 

+ or all –) for each non-zero state.  These states occur whether an individual qubit is in the 

classical or superposition phase, because in either phase half the states are non-zero. Using 

the same reasoning used by the AND decode proof in section 4.4.3, the number of 

intermediate product terms in the final sum for Q2 is 22. This result contains only even 

factors, so a zero-value output can only be produced by a GA sum from an equal number of 

“+” and “–” terms because q2 mod 3 0≠ . Therefore, any zero-valued output can only be 

produced by pair-wise cancellation. The visual confirmation of these states for Q2 can be 

seen in Figure 6.4. 

 

Input expression is (a0 + a1)(b0 + b1) 
INPUTS: a0 a1 b0 b1 | + a0 b0 + a0 b1 + a1 b0 + a1 b1 | OUTPUT 
**************************************************************** 
ROW 00: - - - - | + + + + | + ç contains all +s 
ROW 01: - - - + | + - + - | 0 ç contains 2 +s and 2 -s 
ROW 02: - - + - | - + - + | 0 ç contains 2 +s and 2 -s 
ROW 03: - - + + | - - - - | - ç contains all -s 
**************************************************************** 
ROW 04: - + - - | + + - - | 0 ç contains 2 +s and 2 -s 
ROW 05: - + - + | + - - + | 0 ç contains 2 +s and 2 -s 
ROW 06: - + + - | - + + - | 0 ç contains 2 +s and 2 -s 
ROW 07: - + + + | - - + + | 0 ç contains 2 +s and 2 -s 
**************************************************************** 
ROW 08: + - - - | - - + + | 0 ç contains 2 +s and 2 -s 
ROW 09: + - - + | - + + - | 0 ç contains 2 +s and 2 -s 
ROW 10: + - + - | + - - + | 0 ç contains 2 +s and 2 -s 
ROW 11: + - + + | + + - - | 0 ç contains 2 +s and 2 -s 
**************************************************************** 
ROW 12: + + - - | - - - - | - ç contains all -s 
ROW 13: + + - + | - + - + | 0 ç contains 2 +s and 2 -s 
ROW 14: + + + - | + - + - | 0 ç contains 2 +s and 2 -s 
ROW 15: + + + + | + + + + | + ç contains all +s 
**************************************************************** 
Row counts for outputs of ZERO=12, PLUS=2, MINUS=2 for TOTAL=16 rows. 
 

Figure 6.4: Pair-wise Cancellation of Null States in Q2 
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6.3 Pauli Spin and Cross-Qubit Singlets 

All qubit interactions Qq generated using the product A B C … produce the sum of products, 

where each product term is called a singlet. As demonstrated in Section 5.5, applying the 

maximal Pauli spin operator PX = (–1 + x0 x1) to some qubit X = (±x0 ±x1) was equivalent 

to switching from the diagonal basis to the vertical/horizontal basis. A singlet can therefore 

be created simply by applying the maximal Pauli spin PX to every qubit in a quantum register 

Qq followed by the application of the appropriate spinor and sign to choose ±x0 or ±x1. 

 

Since the Pauli operators commute, applying the corresponding Pauli operator PX  in any 

order produces a unique singlet depending on the starting states. 

A0 B0 PA PB = A0 PA B0 PB = (a0 – a1)(–1 + a0 a1)(b0 – b1)(–1 + b0 b1) = a1 b1     (6.3) 

This means that each cross-qubit entanglement singlet due to PX  operator can be thought of 

as qubits expressed in the alternate Pauli basis. Consequently, the sum of singlets produced 

by the product A B is simply the co-occurrence of two out-of-phase qubit states, e.g. {A0, A–} 

or {A1, A+}, which are represented in the Pauli basis as (A0PA + A–PA) = (–a0 –a1) and (A1PA  

+ A+PA) = (a1 + a0) respectively. This dual interpretation is somewhat different from the 

meaning of these basis states in H4 because the computational singlets are not generated 

using the Pauli operator. This dual interpretation is useful in proofs presented later. 

 

One additional insight about cross-qubit singlets is quite telling when two Pauli spin 

expressions (–1 + x0 x1) are thought of as a combined operator PA PB. This operator 

represents all possible combinations of the spinors (even grade) and always commutes: 

PA PB = (–1 + a0 a1)(–1 + b0 b1) = (1 – a0 a1 – b0 b1 + a0 a1 b0 b1 )                 (6.4) 
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6.4 Sequential and Concurrent Application of Spinor Operators  

Since quantum registers are expressed as the interaction of two (or more) qubits, formed by 

the geometric product, it is important to recognize the impact of multiplication order. My 

single qubit convention requires performing operator multiplication on the right side. This 

same rule will be applied to quantum registers. For example, in equation (6.5) two qubits are 

each multiplied by their respective Hadamard transform. Since bivectors always commute, 

multiplication order is unimportant for spinors. Consequently all Pauli operators commute. 

A0 B0 SA SB = (+a0 – a1)(+b0 – b1)(a0 a1)(b0 b1) = (+a0 + a1)(+b0 + b1) = A+B+      (6.5) 

The product of the qubit pseudoscalars forms a grade-2q vector and hence the master 

pseudoscalar I2 = (a0 a1)(b0 b1) for Q2. Applying IQ, the overall state changes one 

Hadamard operator at a time, thereby sequentially placing all the qub its into superposition: 

IA IB  … = SA SB  … = (a0 a1)(b0 b1) … = (a0 a1 b0 b1 …) = IQ                    (6.6) 

This prompts the question: Can all the qubits be placed in superposition states simultaneously 

rather than sequentially? This is possible to express if the Hadamard operators are applied 

concurrently using the interpretation of co-occurrence as addition, cf. Figure 6.5. 

 

ga.pl table "(a0 - a1)(b0 - b1)(a0 a1  +  b0 b1)" 
INPUTS: a0 a1 b0 b1 | - a0 b0 + a1 b1 | OUTPUT 
**************************************************************** 
ROW 01: - - - + | - - | +    qubit A is in superposition 
ROW 02: - - + - | + + | -    qubit A is in superposition 
**************************************************************** 
ROW 04: - + - - | - - | +    qubit B is in superposition  
ROW 07: - + + + | + + | -    qubit B is in superposition  
**************************************************************** 
ROW 08: + - - - | + + | -    qubit B is in superposition  
ROW 11: + - + + | - - | +    qubit B is in superposition  
**************************************************************** 
ROW 13: + + - + | + + | -    qubit A is in superposition 
ROW 14: + + + - | - - | +    qubit A is in superposition  
**************************************************************** 
Row counts for outputs of ZERO=8, PLUS=4, MINUS=4 for TOTAL=16 rows. 
 

Figure 6.5: Concurrent Hadamard Transform for Q2 
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Figure 6.5 offers several unexpected results. First, two of the four tensor product terms {a0 

b1, a0 b1} cancel due to the summation of opposite signs. Second, the only valid states (non-

zero) occur when exactly one qubit is in superposition (highlighted in yellow) and all other 

qubit states are classical. This situation works for larger Qn, as validated using the ga.pl tool 

for Q3, Q4, Q5, Q6 and Q7 (see partial results in Figure 6.6). Based on this partial 

analysis, the same symmetric result is expected to work for any Qq but no proof is outlined 

nor any further intuition developed here.  

 

Input expression is (a0 - a1)(b0 - b1)(c0 - c1)(a0 a1 + b0 b1 + c0 c1) 
INS: a0 a1 b0 b1 c0 c1 | -a0 b0 c1 -a0 b1 c0 -a0 b1 c1 -a1 b0 c0 -a1 b0 c1 -a1 b1 c0 |OUT 
********************************************************* 
ROW 05: - - - + - + | - - + + - - | +              <snip-removed 10 rows> 
ROW 58: + + + - + - | + + - - + + | - 
********************************************************* 
Row counts for outputs of ZERO=40, PLUS=12, MINUS=12 for TOTAL=64 rows. 
 
Input expr is (a0 - a1)(b0 - b1)(c0 - c1)(d0 - d1)(a0 a1 + b0 b1 + c0 c1 + d0 d1) 
********************************************************* 
ROW  21: - - - + - + - + | + - - - + + - - - + | +  <snip-removed 30 rows> 
ROW 234: + + + - + - + - | + - - - + + - - - + | + 
********************************************************* 
Row counts for outputs of ZERO=192, PLUS=32, MINUS=32 for TOTAL=256 rows. 
 
In(a0 - a1)(b0 - b1)(c0 - c1)(d0 - d1)(e0 - e1)(a0 a1 + b0 b1 + c0 c1 + d0 d1 + e0 e1) 
****************************************************************************** 
ROW  85: - - - + - + - + - + | + - - - + - - + - + + + + - + - - + - - - + | +  <snip> 
ROW 938: + + + - + - + - + - | - + + + - + + - + - - - - + - + + - + + + - | - 
****************************************************************************** 
Row counts for outputs of ZERO=864, PLUS=80, MINUS=80 for TOTAL=1024 rows.  
 

Figure 6.6: Concurrent Hadamard Transform for Q3, Q4 and Q5 (truncated tables) 

 

The concurrent Hadamard transform is unusual because every valid state has exactly one 

qubit in superposition, with all the other qubits in the classical phase. Also, the operator 

doubles the starting number of non-zero row states from four to eight, creating a less 

constrained system. It is interesting to note this state pattern naturally arises from 

concurrency and symmetry in GA and can be expressed using just the a subset of the 
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complete tensor expansion, in which all are q-vectors of the same rank. The literature does 

not succinctly identify this operator but the next sections demonstrate its relationship to the 

Bell states. These superposition states are not separable and this will be discussed in detail in 

the next two sections.  

6.5 Concurrent Hadamard Transform and Ebits 

The most interesting result from the above concurrent Hadamard transform applies only to 

Q2, where the result (– a0 b0 + a1 b1) contains each input vector exactly once. The form of 

this result (sum of two bivectors) closely matches one of the Bell states 00 11+0 0  (less the 

sign), which is maximally entangled and not separable. The Bell states are the important 

states that represent an “ebit” (for EPR-bit), which allows two remotely located EPR encoded 

qubits to remain non- locally connected thru entanglement. Most likely a similar Bell state 

exists for pairs of photons using two qutrits. This discussion of Bell states continues in 

Section 6.7. 

6.6 Concurrent Hadamard Transform and Alternative Bases 

For H4, besides the four standard basis { 00 , 01 , 10 , 11}0 0 0 0  and the four dual basis 

{0'0' , 0'1' , 1'0' , 1'1' }0 0 0 0 , four Bell states ±Φ  and ±Ψ  are also defined as 

{ 00 11α+Φ =  +  0 0 , 00 11β−Φ =  −  0 0 , 01 10β+Ψ =  +  0 0 , 01 10α−Ψ =  −  0 0 } 

with normalizing constants 1 2α β= = .  Likewise, the H4 magic bases are identical to 

the Bell bases except that one of the normalizing constants change slightly to 2iβ = . 

This suggests that the Bell and magic states are topologically related. The remainder of this 
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section will define the Bell and magic states for Qq, the operators to enter these bases, and 

the operators to move between elements of the set. 

 

The following notation will be used to facilitate the derivations used in this section. For qubit 

multivectors A (and likewise for B), the individual odd grade qubit states are again denoted as  

{A0 = (a0 – a1), A1 = (– a0 + a1), A+ = (+ a0 + a1), A– = (– a0 – a1)}. The related even grade 

expressions are the pseudoscalar (spinor) IA = SA = (a0 a1) and the max Pauli spin term PA = 

(–1 + SA) = (–1 + a0 a1). The max pseudoscalar is I2 = IA IB = SA SB. The cross-qubit spinors 

{S00 = (a0 b0), S01 = (a0 b1), S10 = (a1 b0), S11 = (a1 b1)} also represent entangled bivectors 

and are alternatively written as {E00, E01, E10, E11}. Using this shorthand notation, the 

traditional classical starting state in Q2 is simply the product A0 B0.  

 

The four cyclic Bell state multivectors for Q2 {B0 = – S00 + S11, B1 = S01 + S10, B2 = S00 – 

S11, B3 = – S01 – S10} can be defined using the recursive operator B(i+1)mod4 = B i (SA + SB). 

The expanded form of these compact equations has been verified using the ga.pl tool. 

B0 = A0 B0 (SA + SB) = +Φ     and also B0 = B3 (SA + SB) 
 

B1 = A0 B0 (SA + SB) (SA + SB) = B0 (SA + SB) = +Ψ  
(6.7) 

B2 = B1 (SA + SB) = + −−Φ = Φ  
 

B3 = B2 (SA + SB) = + −−Ψ = Ψ  (then cycles back to B0) 
 

The concurrent Hadamard transform converts the standard basis for A0 B0 into the Bell states 

of +Φ . Repeated applications of this Bell operator in Q2 act similarly to the individual 
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Hadamard operator for Q1 because an alternate phase state +Ψ  is first achieved, and thence 

complement states + −−Φ = Φ  and + −−Ψ = Ψ , and lastly back to the starting state +Φ .  

 

The magic state multivectors {M0 = S01 – S10, M1 = – S00 – S11, M2 = – S01 + S10, M3 = 

S00 + S11} can also be generated using the recursive operator M(i+1)mod4 =Mi (SA – SB) 

starting from the initial state M0 = A0 B0 (SA – SB) but also from M0 =M3 (SA – SB).  

Mathematically, the operators B = (SA + SB) and M = (SA – SB) are both a basis and phase 

converter, plus a generator for four states (two states and their complements).  

 

In order for an operator squared to produce the complement, it must represent the same 

property as 2 1A = −S  or 1A NOT= − =S . The concurrent Hadamard equivalent can be 

understood by computing its square, which is B 2 = (SA + SB)2 = (1 – SASB) = (1 – I2). This 

relationship is illustrated in Figure 6.7 and represents the table vector output notation of (1 – 

I2) = [0– –0 –00– –00– 0– –0]. 

 
ga.pl table "(a0 a1 + b0 b1)(a0 a1 + b0 b1)" 
Input expression is (a0 a1 + b0 b1)(a0 a1 + b0 b1) 
INPUTS: a0 a1 b0 b1 | + 1 - a0 a1 b0 b1 | OUTPUT 
**************************************************************** 
ROW 01: - - - + | + + | - 
ROW 02: - - + - | + + | - 
**************************************************************** 
ROW 04: - + - - | + + | - 
ROW 07: - + + + | + + | - 
**************************************************************** 
ROW 08: + - - - | + + | - 
ROW 11: + - + + | + + | - 
**************************************************************** 
ROW 13: + + - + | + + | - 
ROW 14: + + + - | + + | - 
**************************************************************** 
Row counts for outputs of ZERO=8, PLUS=0, MINUS=8 for TOTAL=16 rows. 

 

Figure 6.7: Square of Concurrent Hadamard (SA + SB)2 = (1 – SA SB) in Q2 
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This result displays the valid states for (1 – SA SB) and highlights the fact that all valid output 

states possess the same “–” value. This operator equation represents -I , an invariant 

inversion operator, but not a constant scalar value.  Likewise, using the vector notation, its 

inverted operator (–1 + SA SB) = [0++0+00+ +00+0++0] generates only eight “+” output 

states and represents an invariant identity operator +I . Both invariants contain encoded 

phase information due to the ir component spinors, because the opposite phase version of ±I  

also exists. As previously seen, Pauli spins and all n-vectors X of the multivector form =±I     

(±1±X) possess table outputs of the same sign for all states because the GA sum containing a 

constant value of ±1 acts like a comb filter for the matching half of the product parity states. 

 

Any state X in Q2 experiences a bimodal phase switch between two mutually exclusive sets 

of states because ( ) (90 )A B rotate=S + S o  and ( )2
= (180 )A B rotate−=S + S oI . Each set 

contains the inverted output states, thereby defining a single co-exclusion. The eight valid 

state rows in +Φ  have different row numbers from the eight valid row states of +Ψ , so the 

bimodal operator switches between these two phase sets while using only eight non-zero 

operator states.  

 

The proof for these two phase equations for any Qq is based on the concept that a recursive 

operator can evolve either (1) the system state from an initial starting state, or (2) itself since 

( ) ( )3

A B A B= −S + S S + S  and ( ) ( )5

A B A B=S + S S + S . This invariant ( ) ( )5

A B A B=S + S S + S  

means the expression 4( ) = ( 1+ ) =A B A B−S + S S S +I  is a non-constant invariant unitary 

idempotent operator. Likewise,  ( )2
(1 )A B A B= − =S + S S S -I  so -I  is its own invariant 
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multiplicative inverse operator. In other words, the invariant -I  squared produces the 

unitary operator = (1 )(1 ) = ( 1+ ) =A B A B A B− − −S S S S S S- - +I I I , but does not produce a 

constant +1 value. These relationships are most likely true due to the fact the four-vector 

A BS S  is the only n-vector in Q2 that is its own reverse †) )A B A B=(S S (S S , so it is self-adjoint.  

 

Likewise for larger Qq, the equations ( ) ( )3
... ...A B C A B C+ + = − + +S + S S S + S S  and 

( ) ( )5
... ...A B C A B C+ = +S + S + S S + S + S  have been easily validated for {1...10}q ∈ . This 

validation reveals that, due to the tensor product, the intermediate phase states are simply all 

the combinations of the pseudoscalars taken two at a time (all 4-vectors). This insight 

constitutes a proof of  ( )2
...A B CX X X−+ = = −S + S + S I  for any Qq independent of the 

starting state of multivector X because the second application of the even grade commuting 

spinor to any n-vector in X cancels the first spinor while leaving a minus sign SJ SJ = –1.  

Therefore for any X in Qq, the concurrent Hadamard squared produces the complement –X. 

Conversely, the pseudoscalar product does not represent a Bell operator because 

( ) ( )3
... ...A B C A B C= −S S S S S S  and ( ) ( )5

... ...A B C A B C=S S S S S S  are only true for Qq for some 

grades {1,3,4,7,8,...}q ∈ . This concludes the proof that the concurrent Hadamard transform 

is a recursive operator for any Qq, and can also be used as the generator for Bell states. 

 

Table 6.1 summarizes the definitions of the Bell and magic basis states along with the other 

bases discussed. The notation is the scalar coefficients from ( )00 01 10 11α β µ υ+ + +S S S S , 
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written as a vector [ ]α β µ υ .  Table 6.1 is organized slightly differently from the usual 

tables for H4 because the column numbers, represented as a 2-bit Grey code, reflect the 

phase and inversion distinctions. The vector notation using spinors applies only to this table. 

 

Table 6.1: Summary of Basis States using spinor singlets {S00, S01, S10, S11} for Q2   

Basis Basis State 002 Basis State 012 Basis 112 = –002 Basis 102 = –012 

Standard A0 B0 = [+ – – +] A0 B1 = [– + + –] A1 B1 = A0 B0 A1 B0 = A0 B1 

Dual A– B– = [+ + + +] A– B+ = [– – – –] A+ B+ = A– B– A+ B– = A– B+ 

A0B0P= [0 0 0 +] A0B1P= [0 0 0 –] A1B1P = A0B0P A1B0P = A0B1P 

A0B–P= [0 0 + 0] A0B+P= [0 0 – 0] A1B+P = A0B–P A1B–P = A0B+P 

A–B0P= [0 + 0 0] A–B1P= [0 – 0 0] A+B1P = A–B0P A+B0P = A–B1P 

Pauli 
P=PAPB 

A–B–P= [+ 0 0 0] A–B+P= [– 0 0 0] A+B+P = A–B–P A+B–P = A–B+P 

Bell B0 = [– 0 0 +] B1 = [0 + + 0] B2 = [+ 0 0 –] B3 = [0 – – 0] 

Magic M0 = [0 + – 0] M1 = [– 0 0 –] M2 = [0 – + 0] M3 = [+ 0 0 +] 

H4 basis 00  or +Φ  01  or +Ψ  11  or −Φ  10  or −Ψ  
 
 

Moreover, the standard and dual bases are co-occurrences of all singlets and produce 

indistinguishable basis pairs because an inversion of either qubit produces the same overall 

result. The inseparable Bell and magic states each encode a distinct co-exclusion. The Bell 

and magic states are topologically similar but do not overlap because they differ by a phase 

angle, which is proven in the next section. The Q2 Pauli states have isolated singlet terms 

similar to the H4 standard basis. The computational basis cannot be expressed here because, 

e.g. A0B0(1+a0)(1+a1)(1+b0)(1+b1) = S00 – SA b0 + a0 SB – SA SB. 
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The application of the Bell/magic operators loses phase information upon entering the 

Bell/magic states, making the Bell/magic operators irreversible. This information loss strands 

the Q2 system state in the entangled states. This fundamental definition of the Bell states is 

related to phase loss and will be quantitatively explored in the Section 6.7.  

 

The Bell state operator B = (SA + SB) gives an ordered cycle B0
→B1

→B2
→B3

→B0. Another 

recursive operator PA PB = (–1 + SA)(–1 + SB) generates the reverse cyclic order 

B3
→B2

→B1
→B0

→B3  because the product PA PB B = (–1 + SA SB) is the previously 

discovered invariant identity operator +I . So the ring direction is reversible but the phase 

loss is not. Also –PA PB produces the normal cyclic order, so is similar to B (denoted as ~). 

 

Table 6.2: Summary of Bell/magic States times Recursive Operators for Q2 

Definition of the 
Bell and magic States  

– S00  
+ S11 

+ S01   
+ S10 

+ S00 
– S11 

– S01 
– S10 

+ S01 
– S10 

– S00 
– S11 

– S01 
+ S10 

+ S00 
+ S11 

Recursive operator A0B0 B0 B1 B2 B3 M0 M1 M2 M3 

B = (SA + SB) B0 B1
→ B2

→ B3
→ B0

→ 0 0 0 0 

–B =  (– SA – SB) B3 ←B3 ←B0 ←B1 ←B2 0 0 0 0 

M = (+ SA – SB) M0 0 0 0 0 M1
→  M2

→  M3
→  M0

→  
–M = (– SA + SB) M3 0 0 0 0 ←M3 ←M0 ←M1 ←M2 

 –PA PB ~B –S11 B1
→ B2

→ B3
→ B0

→ =M0 =M1 =M2 =M3 
PA PB ~ –B S11 ←B3 ←B0 ←B1 ←B2 M2x0 M3x1 M0x2 M1x3 

(–1 – SA) PB ~ M –S01 B2x0 B3x1 B0x2 B1x3 M1
→  M2

→  M3
→  M0

→  
PA (–1 – SB) ~ –M –S10 B2x0 B3x1 B0x2 B1x3 ←M3 ←M0 ←M1 ←M2 

(PA)-1(PB)-1 ~ B S00 B1
→ B2

→ B3
→ B0

→ M2x0 M3x1 M0x2 M1x3 
– (PA)-1(PB)-1 ~ –B –S00 ←B3 ←B0 ←B1 ←B2 =M0 =M1 =M2 =M3 
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The magic state order M3
→M2

→M1
→M0

→M3 also has a reverse order recursive 

operator PA (–1 – SB) whose product with the magic basis operator M = (SA – SB) forms the 

other idempotent identity operator +I  = (–1 + SA)(–1 – SB)(SA – SB) = (–1 – SA SB), but the 

rows are out of phase when compared to (–1 + SA SB). These “reverse” operators do not force 

entry into the Bell or magic states.  A summary of the Bell and magic operators is provided 

in  Table 6.2. 

 

It is not clear from the literature how any of these recursive operators can be expressed using 

the “ket” notation in H4, nor is it immediately obvious that half of these states are in fact 

complements of the others. Incidentally, taking an operator F  to the nth power in Hn is the 

same as the nth tensor product, which defines the tensor power operator, denoted as n⊗F . Of 

course, these specialized tensor product and tensor power operators are not needed in Qq. 

6.7 Entanglement Means Co-occurrence with Cross-Qubit Spinor  

The Bell basis B0 = – S00 + S11 and magic basis M3 = S00 + S11 in Q2 are identical except 

for a sign change, which suggests a phase difference. The exact form of this phase change 

can be derived starting with M3 = (+ a0 b0 + a1 b1). The approach for this proof uses the 

fact that for any multivector A using mod 3 addition, A + A = –A, or conversely – A – A = +A: 

 

M3 = (a0 b0 + a1 b1)  
è (– a0 b0 + a1 b1  – a0 b0)  
è (– a0 b0 + a1 b1) – (a0 b0)                                                                                 (6.8) 
è (a0 – a1)(b0 – b1)(a0 a1 + b0 b1) – (a0 b0) 
è A0 B0 (SA + SB) – S00 = B0 – S00   but also M3 = B2 (S01 + S10) = –B0 (S01 + S10)  
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This result reveals a co-occurrence within M i, in which a cross-qubit spinor Sij = Eij is 

equivalent to a phase change (cf. Section 6.6). This derivation is confirmed in Figure 6.8 

using the ga.pl tool, where the highlighted rows show the valid states with multiple 

superposition phases. State transitions can therefore be expressed either as concurrent phase 

changes or as a multiplicative operator.  

 

Input expression is (a0 - a1)(b0 - b1)(a0 a1 + b0 b1) - a0 b0 
INPUTS: a0 a1 b0 b1 | + a0 b0 + a1 b1 | OUTPUT 
**************************************************************************** 
ROW 00: - - - - | + + | - è A in superposition, B in superposition 
ROW 03: - - + + | - - | + è A in superposition, B in superposition 
**************************************************************************** 
ROW 05: - + - + | + + | - è A is classical, B is classical 
ROW 06: - + + - | - - | + è A is classical, B is classical 
**************************************************************************** 
ROW 09: + - - + | - - | + è A is classical, B is classical 
ROW 10: + - + - | + + | - è A is classical, B is classical 
**************************************************************************** 
ROW 12: + + - - | - - | + è A in superposition, B in superposition 
ROW 15: + + + + | + + | - è A in superposition, B in superposition 
**************************************************************************** 
Row counts for outputs of ZERO=8, PLUS=4, MINUS=4 for TOTAL=16 rows. 
 

Figure 6.8: Validation of Magic State Phase Relationship M3 =B0 – S00 in Q2 

 

This co-occurrence with a phase spinor is an important concept and will be used in section 

6.8 to prove that the Bell and magic states represent an irretrievable loss of phase information 

caused by the ir application. This loss of information due to applying B and M is important 

because it formally shows why the Bell/magic states are entangled and inseparable. 

6.8 Bell Basis States are Irreversible in Q2 

Any basis (except the computational) can be entered and reversibly exited in Q1 because, for 

every multiplicative basis operator, there exists a multiplicative inverse, thus reversing the 

process and exiting the state back to the starting state. All n-vectors are their own 
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multiplicative inverse (with appropriate sign change). Unfortunately, a multiplicative inverse 

does not exist for all multivectors (sums of arbitrary rank n-vectors). This lack of operator 

reversibility strongly suggests that some loss of information must therefore impact the system 

state. This section proves that entering any of the Bell or magic states causes a loss of phase 

information, and details exactly how these irreversible recursive operators irretrievably throw 

away phase information. 

 

This claim will be substantiated by showing exactly what phase information is discarded by 

the recursive operators and then by demonstrating that the recursive operators are irreversible 

because no multiplicative inverse exists. Finally, the reason the operators discard information 

will be directly related to the action of the multiplicative operator in canceling some states. 

6.8.1 Discarded Phase Information in Bell States 

While searching for the reversibility of the Bell operator, the missing phase information was 

discovered. Start with qubits A and B in their superposition states:  

A0 B0 (SA SB) = A+ B+ = (S00 + S01 + S10 + S11)                               (6.9) 

Next apply the concurrent Hadamard or Bell operator to produce the Bell state: 

B2 = A+ B+ (SA + SB) = (S00 – S11)                                         (6.10) 

So the ideal reversible solution would be the inverse operator (SA + SB)-1 such that: 

A+ B+ =? B2 (SA + SB)-1                                                  (6.11) 

Using trial and error, the closest value for (SA + SB) -1 is either (–1 + SA) or (–1 + SB): 

B2 (–1 + SA) = B2 (–1 + SB) = (– S00 + S01 + S10 + S11) = (A+ B+) – S00     (6.12) 
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The result is exactly a phase difference away from a desired return state. This exact 

multiplicative solution exists only if (SA + SB) -1 exists. It is suspected that 1/(SA + SB) does 

not exist but an exhaustive proof confirms it in the next subsection. In addition, the known 

invariant inversion operator (1 – SA SB) reverses the state iteration direction without exiting. 

6.8.2 No Multiplicative Inverse for (SA + SB) 

The Bell states would be reversibly exited if a solution existed for X = (SA + SB) -1 such that 

(SA + SB)(X) = 1. The gasolve.pl tool exhaustively tested all 43,046,720 possibilities in a five-

day run for solutions to (a0 a1 + b0 b1)(X) = 1 but found none, so (SA + SB) -1 does not exist 

in Q2. This is also proved again below using the Cancellation Principle of Multiplication. 

6.8.3 Recursive Operator Erases Phase Information 

The recursive operator erases information because some operator states multiplicatively 

cancel to 0 (nilpotent). This is shown using the following equations and Pauli substitutions: 

A+ B+ = A0 B0 SA SB = + S00 + S10 + S01 + S11 = (S00 + S11) + (S10 + S01) = M3 +B 1 

S11 = A0 B0 (PA)(–1)(PB)(–1) = A0 B0 PA PB (+1)                           (6.13) 
S00 = A0 B0 (PA SA)(PB SB)  = A0 B0 PA PB SA SB 

S01 = A0 B0 (PA SA)(PB (–1)) = –A0 B0 PA PB SA 

S10 = A0 B0 (PA (–1))(PB SB) = –A0 B0 PA PB SB 

 

Now substitute, combine pairs, and remove the common highlighted A0 B0 to produce: 

(A0 B0) SA SB = M3 +B1 = (A0 B0) PA PB (1 + SA SB) – (A0 B0) PA PB (SA + SB) 
(6.14) 

SA SB = PA PB (1 + SA SB) – PA PB (SA + SB) 

Use the ga.pl tool to simplify PA PB (1 + SA SB) = (–1 – SA SB) and combine terms: 

SA SB = (–1 – SA SB) – PA PB (SA + SB) 
(6.15) 

(1 – SA SB) = –PA PB (SA + SB)  
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Earlier we found the concurrent Hadamard operator squared is (1 – SA SB) = (SA + SB)2, so: 

(1 – SA SB) = (SA + SB) (SA + SB) = –PA PB (SA + SB)                    (6.16) 

Now apply the Cancellation Principle of Multiplication for multivectors (p 38 in [16]), which 

states: if Y X = Z X then Y = Z if and only if 1/X exists. So for X = Y = B and Z = –PA PB: 

Z = –PA PB = (–1 + SA + SB – SA SB) = Y  +  (–1 – SA SB)                (6.17) 

So Y = Z only if (–1 – SA SB) = 0. Since (–1 – SA SB) is always non-zero, this contradiction 

means that (SA + SB)-1 does not exist. The overall equality is true because (SA+SB)(–1 –SA SB) 

= 0 . So even though the equality B B = –PA PB B  is true, the imputed equality B ?= –PA PB 

is never true. This means two (–1 – SA SB) of the four terms from the multivector –PA PB “do 

not occur” since they are multiplicatively masked by the operator B = (SA + SB). Also the 

inverse of the expression –(PAPB)-1 = –(1+SA)(1+SB) exists and does not exit the Bell states 

either.  Table 6.3 shows the table output for the three important states.  

 

Table 6.3: Masked Operator States (–1 – SA SB)(SA + SB) = 0 for Q2    

Complete Operator –PA PB Masking Operator (SA + SB) Filtered States (–1 – SA SB) 
a0 a1 b0 b1| -1 + a0 a1 + 

+ b0 b1 - a0 a1 b0 b1|OUT 
************************* 
ROW 00 - - - - |- + + -|0 
ROW 03 - - + + |- + + -|0 
************************* 
ROW 05 - + - + |- - - -|- 
ROW 06 - + + - |- - - -|- 
************************* 
ROW 09 + - - + |- - - -|- 
ROW 10 + - + - |- - - -|- 
************************* 
ROW 12 - - - - |- + + -|0 
ROW 15 - - + + |- + + -|0 
************************* 

a0 a1 b0 b1| 
a0 a1 + b0 b1|OUT 

************************* 
ROW 00: - - - - | + + | - 
ROW 03: - - + + | + + | - 
************************* 
ROW 05: - + - + | - - | + 
ROW 06: - + + - | - - | + 
************************* 
ROW 09: + - - + | - - | + 
ROW 10: + - + - | - - | + 
************************* 
ROW 12: + + - - | + + | - 
ROW 15: + + + + | + + | - 
************************* 

a0 a1 b0 b1| 
-1 - a0 a1 b0 b1|OUT 

************************* 
ROW 00: - - - - | - - | + 
ROW 03: - - + + | - - | + 
************************* 
ROW 05: - + - + | - - | + 
ROW 06: - + + - | - - | + 
************************* 
ROW 09: + - - + | - - | + 
ROW 10: + - + - | - - | + 
************************* 
ROW 12: + + - - | - - | + 
ROW 15: + + + + | - - | + 
************************* 

-1 + a0 a1 + b0 b1 - a0 a1 b0 b1 = (a0 a1 + b0 b1)+ (-1 - a0 a1 b0 b1) 
 



 122 

Since (–1 – SA SB) is a factor of Mi, therefore Mi B = 0. Similarly the multivector (1– SA SB) 

is a factor of Bi, therefore Bi M = 0, which means half the states in equation 6.13 are erased 

using either the B or M operators. Also, if the system is in a Bell state, multiplying by the 

magic operator B0-3 (SA – SB) = 0, or vice versa M0-3 (SA + SB) = 0, always produces zero. 

 

 

Figure 6.9 Summary of Bell and magic states using Pauli basis singlets  

 

In summary, many significant results have been uncovered for the alternate bases of Q2. The 

interpretation of co-occurrence and co-exclusion has added great insight to this process, and 

the natural spinor representation in geometric algebra has allowed simple proofs of 

previously unexplored topics. The Bell and magic bases are fundamentally different from the 

standard and dua l bases because more distinct states are maintained in their concurrent 

relationships, due to a loss of phase information to enter those states. Therefore, the Bell and 

magic states are entangled and not separable because no multiplicative inverse operator exists 

to exit those states. Mathematically speaking, this is equivalent to the H4 tensor product 
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definition of separability but gives more insight into the irreversible nature of the Bell and 

magic states. The recursive B and M operators exclude some operator states, thus 

irreversibly losing phase information compared to the unentangled standard and dual bases.  
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CHAPTER 7  

QUANTUM COMPUTING IN GEOMETRIC ALGEBRA 

 

7.1 Single Qubit Operators  

The primary operators or gates that exist for a single qubit are the Hadamard, Inverter, and 

Phase gates, plus their additive combinations that define the Pauli operators. These gates 

have previously been defined but are summarized again in Table 7.1. In addition, basis 

change operators (and their multiplicative combinations) exist, including the measurement 

and computational operators.  For qubit A with Q1 = span {a0, a1}, the co-occurrence is A = 

(±a0 ±a1), spinor A =S (a0 a1), spinor reversion A =S% (a1 a0) = (–a0 a1), the multivector 

rotor AR α β= − S , and the rotor reversion A AR α β α β= − = +S S%% . 

 

Table 7.1: Operator and Basis Summary for Single Qubit A in Q1 

Gates  Geometric Algebra  Operator comments regarding A = (±a0±a1) 
Hadamard  A (SA) = A (a0 a1)   Spinor SA rotates 90° causing phase flip 
Inverter A A AA A=S S S% 2  = –A  Two spinors rotate 180° causing spin flip 

Phase Gate RAR%  Angle θ  then cos( 2), sin( 2)α θ β θ= =   

Basis Operators Geometric Algebra Basis comments regarding A = (±a0±a1) 

Pauli Basis A (–1 + SA)  Rotates 45° to/from diag/ver-hor basis planes 

Circular Basis A (±a0) or A (±a1)   Changes to/from odd/even grade basis planes 
Direct Basis A (± a0 ± a1) Produces ±1 or 50/50 random value-reversible 

Trine Basis A (1 ±a? ± SA) Rotates 120° where a? is either a0 or a1 

Computational A (1 ± a0)(1 ± a1) Produces ±I  or 50/50 random; is irreversible 
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A total of 81 = 34 possible multivectors exist in Q1 and they represent both operators and 

states. One of those states is zero and of the 80 (even) remaining states, 40 are additive 

inverses of the other 40 and have the same properties, so they are excluded. Many of the 40 

operators have already been defined, but for completeness all are summarized in Table 7.2. 

 
Table 7.2: Operator Summary for 41 out of 81 states for Q1 

Equation combinations 
X by Cartesian Distance 

Cart 
Dist 

Eqn 
Label 

–X (X)-1 X 2 X  
Comp 

Basis Vect 
0 
- 1   
- a0   
- a1  
- a0 a1  

0 
1 
1 
1 
1 

0000 
000- 
00-0 
0-00 
-000 

0000 
000+ 
00+0 
0+00 
+000 

none 
X 
X 
X 
-X 

0 
+1 
+1 
+1 
-1 

Found 8 
Found 6 
none 
none 
±00± 

[0 0 0 0] 
[- - - -] 
[+ + - -] 
[+ - + -] 
[- + + -] 

- 1 - a0  = +I  
+ 1 - a0  = −I  
- 1 - a1  = +I  
+ 1 - a1  = −I  
- a0 - a1   
+ a0 - a1   
- 1 - a0 a1 = +I  
+ 1 - a0 a1 = −I  
- a0 - a0 a1  
+ a0 - a0 a1  
- a1 - a0 a1 
+ a1 - a0 a1  

 
Cart 
Dist 
from 
0 is 

2  
 
 
 

00-- 
00-+ 
0-0- 
0-0+ 
0--0 
0-+0 
-00- 
-00+ 
-0-0 
-0+0 
--00 
-+00 

00++ 
00+- 
0+0+ 
0+0- 
0++0 
0+-0 
+00+ 
+00- 
+0+0 
+0-0 
++00 
+-00 

none 
none 
none 
none 
-X 
-X 
-00+ 
-00- 
none 
none 
none 
none 

+X 
-X 
+X 
-X 
-1 
-1 
-000 
+000 
0 
0 
0 
0 

±X 
none 
±X 
none 
0 ± ±∓  
0±±± 
none 
none 
none 
none 
none 
none 

[0 0 + +] 
[- - 0 0] 
[0 + 0 +] 
[- 0 - 0] 
[- 0 0 +] 
[0 + - 0] 
[+ 0 0 +] 
[0 - - 0] 
[0 – 0 +] 
[+ 0 - 0] 
[0 0 - +] 
[+ - 0 0] 

- 1 - a0 - a1   
+ 1 - a0 - a1   
- 1 + a0 - a1   
+ 1 + a0 - a1  
- a0 - a1 - a0 a1  
+ a0 - a1 - a0 a1  
- a0 + a1 - a0 a1  
+ a0 + a1 - a0 a1  
- 1 - a0 - a0 a1  
+ 1 - a0 - a0 a1  
- 1 + a0 - a0 a1  
+ 1 + a0 - a0 a1  
- 1 - a1 - a0 a1  
+ 1 - a1 - a0 a1  
- 1 + a1 - a0 a1  
+ 1 + a1 - a0 a1  

Cart 
Dist 
from 
0 is 

3  
 
 
 

0--- 
0--+ 
0-+- 
0-++ 
---0 
--+0 
-+-0 
-++0 
-0-- 
-0-+ 
-0+- 
-0++ 
--0- 
--0+ 
-+0- 
-+0+ 

0+++ 
0++- 
0+-+ 
0+-- 
+++0 
++-0 
+-+0 
+--0 
+0++ 
+0+- 
+0-+ 
+0-- 
++0+ 
++0- 
+-0+ 
+-0- 

0--+ 
0--- 
0-++ 
0-+- 
X 
X 
X 
X 

+0+- 
+0++ 
+0-- 
+0-+ 
++0- 
++0+ 
+-0- 
+-0+ 

0--0 
0++0 
0-+0 
0+-0 
+1 
+1 
+1 
+1 
-0-+ 
+0++ 
-0++ 
+0-+ 
--0+ 
++0+ 
-+0+ 
+-0+ 

none 
none 
none 
none 
none 
none 
none 
none 
none 

0± ± ±  
none 

0± ±∓  
none 

0± ± ± 
none 

0± ±∓  

[+ - - 0] 
[0 + + -] 
[- 0 + -] 
[+ - 0 +] 
[+ + + 0] 
[- - 0 -] 
[- 0 - -] 
[0 + + +] 
[- + - 0] 
[+ 0 + -] 
[0 - + -] 
[- + 0 +] 
[- - + 0] 
[+ + 0 -] 
[0 + - -] 
[- 0 + +] 

- 1 - a0 - a1 - a0 a1  
+ 1 - a0 - a1 - a0 a1  
- 1 + a0 - a1 - a0 a1 
+ 1 + a0 - a1 - a0 a1  
- 1 - a0 + a1 - a0 a1  
+ 1 - a0 + a1 - a0 a1  
- 1 + a0 + a1 - a0 a1 
+ 1 + a0 + a1 - a0 a1 

Cart 
Dist 
from 
0 is 

4  
 

---- 
---+ 
--+- 
--++ 
-+-- 
-+-+ 
-++- 
-+++ 

++++ 
+++- 
++-+ 
++-- 
+-++ 
+-+- 
+--+ 
+--- 

none 
none 
none 
none 
none 
none 
none 
none 

+X 
-X 
+X 
-X 
+X 
-X 
+X 
-X 

±X 
none 
±X 
none 
±X 
none 
±X 
none 

[0 0 0 -] 
[- - - +] 
[+ + - +] 
[0 0 + 0] 
[+ - + +] 
[0 + 0 0] 
[- 0 0 0] 
[+ - - -] 
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The most interesting results are the operators where no multiplicative inverse exists. Those 

same states also have interesting properties for their squares, where some have the nilpotent 

property 2 0X = ; some operators are idempotent because they have no additional effect 

when applying them more than once 2X X X= = ; while others are indistinguishable 

between inversion, addition, and multiplication: 2 2X X X X X= − = + = . These properties 

restrict designing operators for specific purposes. Probably the most interesting are the 

multivector states { }0 ,A A−  and their additive inverses { }1,A A+  which have the property 

2 1X = −  or ( ) ( ) 1X X− = , which means the standard and dual basis states have identical 

additive and multiplicative inverses or 1X X− = − , which is a useful simplification used later. 

7.1.1 Operators as Computational Basis Vectors  

The Rk computational bases were previously shown to be linearly independent of each other 

and this signifies something important from an operator perspective. Since each row decode 

expression Rk is encoded to be an linearly independent vector, all algebraic states and 

operators can be expressed as additive combinations of these primitive row decode 

computational states, as illustrated in Table 7.3, where gp = geometric product. 

 

Table 7.3: Computational Basis Products as Independent States for Q1  

[ ]0

(1 )(1 )

0 0 0

A

R
−− = − − =

= +

a0 a1
 [ ]2

(1 )(1 )

0 0 0

A

R
+− = + − =

= +

a0 a1
 

[ ]1

(1 )(1 )

0 0 0

A

R
−+ = − + =

= +

a0 a1
 [ ]3

(1 )(1 )

0 0 0

A

R
++ = + + =

= +

a0 a1
 

[ ]
[ ]
[ ]

0

0 0 0

0 0 0

0 0

A A A−+ +−− =

+ +

− +

+ −

 

[a b c d]W [w x y z] = [aW w, bW x, cW y, dW z] for operator { , }gp∈ +W  
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Under these conditions, all addition and n-vector multiplication operators can be simply 

implemented on individual elements of the two vectors. Inversions due to anti-commutative 

swaps must be dealt with separately. These vectors are equivalent to matrix diagonals (since 

[+ + + +] = +1 and [– – – –] = –1) and as well to combinations of the idempotent projection 

operators ( 1 )− ± a0  and ( 1 )− ± a1  or ( 1 )( 1 )− ± − ±a0 a1 . 

 

Using the above basis definitions, all vector operators can be simply implemented pair-wise 

on individual pairs of elements in both vectors. Whenever a symbolic inversion is detected 

due to anti-commutative reordering, the vector (highlighted) must be first inverted. Table 7.4 

illustrates that this symbolic algebra is equivalent to matrix operations on diagonal elements 

using the computational basis with non-commutative inversions appropriately applied.  

 

Table 7.4: Operators as Concurrent Orthogonal Vectors in Q1  

Example Operators Invert Anti- 
Commutative? 

A A A A A A A A−− −+ +− ++ −− −+ +− ++  = + + +   

+1 no + [+ + + +] = +1  or  identity matrix 
–1 no – [+ + + +] = [– – – –] = –1 

+ a0 no [– – + +] 
– a0 no – [– – + +] = [+ + – –]  
+ a1 no [– + – +] 
– a1 no – [– + – +] = [+ – + –] 

A0 = + a0 – a1 no [– – + +] + [+ – + –] = [0 + – 0] 
A1 = – a0 + a1 no [+ + – –] + [– + – +] = [0 – + 0] 
A+ = + a0 + a1 no [– – + +] + [– + – +] = [+ 0 0 –] 
A– = – a0 – a1 no [+ + – –] + [+ – + –] = [– 0 0 +] 
SA = + a0 a1 no [– – + +] gp [– + – +] = [+ – – +] 
a0 SA = a1 no [– – + +] gp [+ – – +] = [– + – +] 

a1 SA = – a0 INVERT [– + – +] gp (–[+ – – +]) = [+ + – –] 
SA SA = – 1 INVERT [+ – – +] gp (–[+ – – +]) = [– – – –] 

(1+a0)(1+a1) = no [0 0 – –] gp [0 – 0 –] = [0 0 0 +] = 
=1 +a0 +a1 +a0 a1 no = +1 + [– + – +] + [– + – +] + [+ – – +] 

(1+a1)(1+a0) = no (1+[– + – +])(1+[+ + – –]) = [+ – – –] = 
=1 +a0 +a1 –a0 a1 INVERT = +1 + [– + – +] + [– + – +] – [+ – – +] 
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As demonstrated by the last example in Table 7.4, all multivector products must be 

distributed first to guarantee the inversion happens only to the most specific n-vector. 

Therefore in this vector notation, multiplication must have precedence over addition due to 

non-commutativity rules. Maintaining the non-commutativity order information still requires 

some algebraic information (or can alternatively maintain the sorting order by using the 

relative frequency information of input vectors), so that the matrices demonstrate the 

computational basis properties. This compact table output form has been used in this 

dissertation since Chapter Four and can be generated instead of a full table by choosing the 

option “ga.pl vector <equation>.” Vector addition works in all spaces but gp only in Q1. 

 

The final detail to point out about the computational bases is that there are twice as many 

output values compared to Hilbert spaces for each qubit because the computational bases are 

not segregated into separate sets for classical and superposition states, but they are pair wise 

orthogonal 0 3 1 2 0R R R R= =i i . Also, even though the computational bases are not reversible 

operators, appropriate sums can produce invertible and reversible solutions. These bases are 

simply the most primitive topological feature of the algebra and have the most precise 

coverage compared to either the input vector set or n-vector product singlets. Since the 

computational bases are the same as table row outputs, they could be used as an efficient 

alternative mechanism for computing the table outputs, effectively in parallel. 

7.1.2 Single qubit measurements 

Besides the ability to place qubits into superposition, the next most important aspect of 

quantum computing is to find the answer residing in the qubit state via a measurement. 

Quantum measurement has traditionally been confusing and misunderstood, due in part to the 
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concurrent nature of superposition states, but also due to the unintuitive representation of 

basis states using complex numbers. Since the qubit representation Q1 in geometric algebra 

simplifies these concepts, the topic of measurement can be addressed more intuitively.  

 

Measurement is confusing because the internal qubit axes are completely independent of the 

orientation within our normal 3D E3 space, which is especially hard to visualize for high-

dimensional entangled spaces. The mapping process into the E3 space therefore represents a 

projection (or shadow) into the lower dimensional space. For the orthogonal Q1 vectors, the 

two angles { , }φ θ  for projecting state A into E3 are imposed by the major spin axis 

orientation φ  and a phase gate angle θ , but only when the measurement is made from an 

apparatus located inside E3 and oriented using { , }φ θ . The result of a measurement is the 

answer (+1 or –1 each with some probability) plus the qubit changing to the end state due to 

the application of the singular measurement operator. 

 

For simplicity sake, let’s disallow arbitrary phase and limit the qubit state to the discrete 

basis previously discussed. Measurement is nothing more than asking if the qubit currently 

occupies one of the two states of a particular basis. For example, when the qubit occupies 

exactly either A0 or A1 and a measurement asks if the qubit “Occupies the spin-up state?”, the 

answer will be either “yes” or “no” respectively, with 100% probability. Asking the basis 

question assumes that the qubit basis is known so that the orientation is aligned with the 

measurement apparatus orientation. This is why it is crucial to know or maintain (by design) 

the correct basis in order to make a valid projection measurement. 
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If the qubit occupies a state in another basis, then some random result will occur with exactly 

a 1 2 50%=  probability. These probabilities are the ratio of the number of states of each sign 

in the vector notation, which are generally 0%, 50% or 100%.  Measuring a spinor state SA = 

[+ – – +] will always produce a 50/50% random value. For Q1 the equivalent probability 

amplitudes are simply the square root of the probability: 1 2 1 2= ± . Introducing some 

arbitrary phase angle due to phase gate operation will create other probability values.  

 

As illustrated in Table 7.5, many state and operator products generate constants or spinors. 

The important difference is these examples are all reversible so do not constitute a 

measurement, even though they are useful. A measurement only occurs using a singular 

operator as originally shown in Table 5.4, which produces an answer, but also side-effects 

the qubit end state to change to the state matching the question. So for singular operator Rk = 

(1±a0)(1±a1) the matching end state is ±a0±a1. The only “constant” answers are due to 

sparse invariants ±I  and not the constants ±1, which are really valid reversible states. 

 

Table 7.5: Reversible Basis Encoding Results in Q1 

Y =Standard? Y=Dual? Circular? H Pauli? V Pauli? Is Qubit State  
A in basis Y? A (+a0–a1) A (–a0–a1) A (1–SA) A (a0) A (a1) 

A0 = (+ a0 – a1) –1 + a0 a1 + a1 +1+a0 a1 –1+a0 a1 
A1 = (– a0 + a1) +1 – a0 a1 – a1 –1–a0 a1 +1–a0 a1 
A+ = (+ a0 + a1) + a0 a1 +1 – a0 +1–a0 a1 +1+a0 a1 
A– = (– a0 – a1) – a0 a1 –1 + a0 –1+a0 a1 –1–a0 a1 
A =(+1 + a0 a1) + a1 + a0 –1 + a0 – a1 + a0 + a1 
A =(–1 – a0 a1) – a1 – a0 +1 – a0 + a1 – a0 – a1 

A = + a0 + 1 – a0 a1 – 1 – a0 a1 + a0 – a1 +1 + a0 a1 
A = – a0 – 1 + a0 a1 + 1 + a0 a1 – a0 + a1 –1 – a0 a1 
A = + a1 – 1 – a0 a1 – 1 + a0 a1 + a0 + a1 – a0 a1 +1 
A = – a1 + 1 + a0 a1 + 1 – a0 a1 – a0 – a1 + a0 a1 –1 
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The four computational basis operators Pk = (–1)(1 ± a0)(1 ± a1) and the row-decode 

operators Rk = (1 ± a0)(1 ± a1) are irreversible measurement operators. The process is 

irreversible because a multiplicative inverse does not exist for (1 ± a0) and (1 ± a1).  This 

means our classical definition of a one-to-one mapping is insufficient to formally express 

reversibility and therefore not identical to the quantum definition for unitary transforms 

because of multiplicative cancellation. This is consistent with the conventional definition of 

unitary matrix operators used in Hilbert spaces. 

7.2 Two-Qubit Operators  

The gate and measurement operators for systems with two or more qubits are identical to the 

single qubit scenario, except that anticommutative rules must be applied to products of odd 

grade multivectors. The major similarity occurs when applying an operator to the separable 

standard and dual bases, a process that is identical to applying them to each of the individual 

qubits and represents two distinct co-exclusions. Another major difference is that the product 

of two idempotent operators from two qubits forms an expanded cyclic definition of an 

idempotent operator. As will be demonstrated, the geometric product of combined separable 

states masks multiple indistinguishable pairs of states, but two classical bits’ worth of 

information can still be extracted. Conversely, the entangled Bell and magic basis states 

contain a loss of one bit’s worth of phase information. As a result, these basis states no 

longer represent two separable co-exclusions, but rather only one entangled classical bit’s 

worth of information. It is impossible to exit Bell/magic states without erasing the entangled 

state, since no multiplicative inverse exists. This argument makes it clear why the answer and 

the end states are distinct due to a measurement because the answer is not a valid qubit state 

and Bell states can be exited by forcibly resetting the coupled states. 
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7.2.1 Control-Not Gate for Q2 

An important gate for two qubits is the conditional inversion behavior called the control-not 

gate. The key to defining the operator for the control-not gate is to realize that imposing a 

condition on the system state effectively reorients the state to the even grade direct basis. 

The direct basis is different from taking a measurement since it is reversible. The new system 

state must mathematically reflect the new imposed perspective by unconditionally applying 

the operator to any possible starting state. 

 

Remember, the control-not conditionally inverts the data qubit when the control qubit is 

True. For the derivation, first start with two interacting qubits in classical states A0 B0 and 

place them both in the Pauli basis A0 B0 PA PB = a1 b1. Remember that for qubit A, the Pauli 

basis transforms respectively the two classical states {A1, A0} into ±a1 and the superposition 

states {A+, A–} into ±a0. Assign the role of “control” to qubit A and the role of “data” to 

qubit B. As Table 7.6 demonstrates, the CNOT behavior conditionally inverts qubit B only 

for the bottom two rows of the table, where the qubit state a1 = +1. This final output equation 

for the desired CNOTAB output is synthesized using the gag.pl tool or, in this case, simply by 

inspection. 

 

Table 7.6: Desired Control-Not Operator X = +a1 where (a1 b1) X = – b1  

a1 b1 (a1 b1) Desired CNOT  Control qubit A in both phases 
– – + + (a1 b0)(+a1) = – b0 
– + – – (a1 b1)(+a1) = – b1 
+ – – + (a0 b0)(+a1) = – a0 a1 b0 
+ + + – 

 

(a0 b1)(+a1) = – a0 a1 b1 
gag.pl "a1,b1" "+0, –1,+2, –3" è – b1  CNOT Operator X = +a1 
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The desired operator is X such that (a1 b1)(X) = – b1 is simply the vector X = +a1, because   

(a1 b1)(+a1) = – (a1 a1 b1) = – b1. The right side of Table 7.6 applies this operator to the 

four possible cases where qubit A is both in the classical phase {a1 b0, a1 b1} (top two rows) 

and in the superposition phase {a0 b0, a0 b1} (bottom two rows). The operator +a1 

conditionally inverts qubit B state when A is classical = 1, thereby represent ing the CNOT 

gate for the Pauli basis. 

 

Multiplying state A by the odd grade vector operator (a1) converts the state to the direct basis 

{±1, ±SA} which effectively orients the state from the perspective of +a1 = +1. Since this 

right multiplication vector operator is of odd grade, an extra non-commutative inversion may 

be implemented, which must be accounted for! When the control bit is not in a classical state, 

the resulting trivector (– a0 a1 bx) encodes this fact. If the roles of the two qubits are 

reversed, then Pauli CNOTBA = – b1 because (a1 b1)(– b1) = – a1. 

 

This analysis used the Pauli basis, but the conditionalize operator can also be converted to 

work in the standard basis by inverting the Pauli basis operator (PA)-1(a1) = (1 + SA) a1 = (a0 

– a1) = A0, which is an odd grade state A0 in the standard basis. Using the ga.pl tool to 

validate all combinations of the standard and dual basis states shown in Table 7.7, the 

converted operator CNOTAB = (a0 – a1) = A0 = [0 + – 0] works as expected for the control in 

all classical states, as listed in the middle column of the table. 

 

The right-most column of Table 7.7 shows the cases when control A is in superposition states 

A±, and the resulting trivector co-occurrences SA B = (± a0 a1 b0 ± a0 a1 b0 ) are consistent 
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but unintuitive. Since (CNOT)2 = –1, then B and M also act like CNOT because operators 

2 = -B I  and 2 = -M I  also invert half of the row states for each application. 

 

Table 7.7: Summary of Operator CNOTAB = A0 for Q2 = {A, B}  

Data B is Control A is Classical Control A is Superposed 
(A0 B0) CNOTAB = B0 (A– B0) CNOTAB = SA B0 
(A0 B1) CNOTAB  = B1 (A– B1) CNOTAB = SA B1 
(A1 B0) CNOTAB = –B0 = B1 (A+ B0) CNOTAB = –SA B0 = SA B1 

Classical 

(A1 B1) CNOTAB = –B1 = B0 (A+ B1) CNOTAB  = –SA B1 = SA B0 
(A0 B–) CNOTAB = B– (A– B–) CNOTAB = SA B– 
(A0 B+) CNOTAB = B+ (A– B+) CNOTAB = SA B+ 
(A1 B–) CNOTAB = –B– = B+ (A+ B–) CNOTAB = –SA B– = SA B+ 

Superposed 

(A1 B+) CNOTAB = –B+ = B– (A+ B+) CNOTAB = –SA B+ = SA B– 
 
 

ga.pl quiet vector "(-a0 - a1)(-b0 - b1)(a0 - a1)" = [-00++00- +00--00+] 
ga.pl quiet vector "(-a0 - a1)(-b0 + b1)(a0 - a1)" = [0-+00+-0 0+-00-+0] 
ga.pl quiet vector "(-a0 - a1)(+b0 - b1)(a0 - a1)" = [0+-00-+0 0-+00+-0] 
ga.pl quiet vector "(-a0 - a1)(+b0 + b1)(a0 - a1)" = [+00--00+ -00++00-]... 

 

Table Output as Row for A B CNOT 
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Figure 7.1: Full Matrix Decode of CNOTAB gate output for Q2 = {A, B} 
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The CNOT operator appears to have all the required properties even though the algebraic 

form looks much different from the matrix format used in H4. Therefore, to frame this 

control-not gate in a similar fashion to H4, it is necessary to recast the derivation using the 

computational basis projectors. It helps that the solution is already in hand. Fortunately, 

Table 7.7 is fully expanded in Figure 7.1 into a matrix containing the vector notation for each 

possible starting input case multiplied times CNOT : 

 

Obviously this matrix possesses significant redundancy: if the key rows 5, 6, 9 and 10 (which 

define the classical cases for Q2) are isolated, the result appears in Table 7.8. This same 

result can also be obtained analytically by using the facts that 1/A0 = A1 and 1/B0 = B1. For 

example, the specific equation A1 B1 CNOTAB = (+1)(B0) can be solved for the operator 

CNOTAB = B0 A0 B0 = A1 B0 B0 = A0 and the other cases are shown in Table 7.8. Notice that 

the product of (+1) represents qubit A in the reversible direct basis state of (+1). 

 

Table 7.8: Row by Row Operator Solutions for CNOT for Q2 = {A, B} 

Inputs A B CNOTAB A B CNOTBA  
A B a0 a1 b0 b1  B  5 6 9 10 

CNOTAB = 
A 5 6 9 10 

CNOTBA = 

5 A1 B1 – +   – +  B0=[+ – + –]  B0 A0B0 = A0 A0 =[– – + +] = B0 A0A0 = B1 
6 A1 B0 – +   + – B1=[– + – +]  B1 A0B0 = A0 A1 =[+ + – –] = B1 A0A1 = B1 
9 A0 B1 + –   – + B1=[– + – +]  B0 A1B0 = A0 A1 =[+ + – –] = B0 A1A1 = B1 
10 A0 B0 + –   + – B0=[+ – + –]  B1 A1B0 = A0 A0 =[– – + +] = B1 A1A0 = B1 

 
 

This result shows that independent of starting state, the CNOT operator is always the same 

expression. The above procedure has not been formalized for arbitrary multivectors X, where 

different individual starting states require different equation solutions to produce the desired 
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result. The complex conjuga te operator is the simplest example that cannot be written as an 

unconditional geometric product, and instead uses the reverse operator.   

7.2.2 Control-Hadamard Gate for Q2 

An inversion operator is always a 180° phase shift and a Hadamard gate is half that phase 

amount. Since the control-not gate exists, perhaps a control-Hadamard gate also exists whose 

square is the control-not operator. The gasolve.pl tool immediately found two operator co-

occurrences: CHADAB = (–1 + A0) and inverse (1 + A1) (see Figure 7.2) whose squares are (–1 

+ A0)2 = A0 = CNOTAB and the 4th power is the inverter (–1 + A0)4 = A0
2 = –1.  

 

The role-reversed operator is CHADBA = (1 + B0) where (1 + B0) 2 = – B0 = B1. Both CHAD 

operators appear to concurrently change to the direct basis and perform an inversion as seen 

in Figure 7.2.  

 

gasolve.pl "a0,a1" "(X)(X)" "(a0 - a1)" 
Found Match for X = - 1 + a0 - a1  in (X)(X) = + a0 - a1 
Found Match for X = + 1 - a0 + a1  in (X)(X) = + a0 - a1 
Attempted 80 with 2 found. 
ga.pl "(a0 - a1)(b0 - b1)(-1 + a0 - a1)(-1 + a0 - a1)" 
+ b0 - b1      <= correctly does NOT invert 
ga.pl "(- a0 + a1)(b0 - b1)(-1 + a0 - a1)(-1 + a0 - a1)" 
- b0 + b1      <= correctly DOES invert 

 

Figure 7.2: Control-Hadamard Operator CHADAB for Q1 = {A} and Q2 = {A, B} 

 

These relationships suggest the CNOT operator has a 90° phase relationship to the 

unconditional inverter, and the control-Hadamard gate a 45° phase relationship. A similar 

45° relationship exists between the Pauli spin and the Hadamard operators because (±PA) 2 = 

SA and (±PA) 4 = (SA) 2 = –1. This helps explains why the Pauli spin rotates the diagonal bases 
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by 45° from the off-diagonal to vertical/horizontal axis. The CHAD also exists for B and M 

operators because gasolve.pl found the solutions B  = (+ 1 + a0 a1 + b0 b1 – a0 a1 b0 b1 ) 

= 2 +B B  = +-I B  = ( +1)B B , which has the same sparse form as (–1 + A0) and M  

= (+ 1 + a0 a1 – b0 b1 + a0 a1 b0 b1) = 2 +M M  = +-I M . Each of these operators 

has at least eight other square roots, each of which contains a scalar, five bivectors, and a 4-

vector. The Q2 geometric product operators are summarized in Table 7.9. 

 

Table 7.9: Operator Summary for Q2 = {A, B} 

Gate/Operator Separable State (A B) Inseparable State i iorAB AB= =B B M M  

Hadamard 90° 0 0 ( )A BA B A B+ +=S S  ( ) 1i i+=B B B  or ( ) 1i i+=M M M  

Inverter 180° ( )A BAB or AB= −S S2 2  ( )2

2i i+=B B B  or ( )2

2i i+=M M M  

Control-HadAB AB (–1 + A0)2 = AB A0 += -B I B  or = -M I + M  

Control-NotAB 0 or AAB A B B= ± ± S  orB M  since 2 = -B I  and 2 = -M I   

Computational AB ±
±±±± =C I or random ( )i ior ±

±±±± =B M C I  or random 

W/Operators ( )= A B+S SB , ( )= A B−S SM  and (1 )(1 )(1 )(1 )±±±± = ± ± ± ±a0 a1 b0 b1C  

 

The entangled Bell or magic basis Bi or Mi can be utilized as operator states equivalent to 

the direct basis. Since every Bell and magic state has the state pair complements in the same 

basis, selecting the right basis should produce the equivalent of the direct basis in Q1. If the 

basis matches with the operator, then the result is either  =i i
+B B I  or  =i i+2

-B B I ; 

otherwise the outcome results in concurrent spinor expression (±SA ± SB), which when 

measured is observed as 50% random values of ±1. 
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7.2.3 Two qubit measurement 

Measurement for the separable standard and dual bases are the same as for individual qubits, 

which assumes known basis for each qubit. Measurement works the same with Rk operators. 

7.2.4 Computational Basis for Two Qubits 

Just as for one qubit, an individual row can be selected for Q2 by taking each separate qubit 

operator RA0 = (1 – a0)(1 – a1) =[+000] and RB0 = (1 – b0)(1 – b1) =[+000] and forming their 

geometric product RA0 RB0 = RAB0 = (1 – a0)(1 – a1)(1 – b0)(1 – b1) = [+0000000 00000000]. 

Likewise, the various projection operators Pk are formed by the relationship Pk = – Rk and are 

irreversible. Since all terms of form (1 ± x) have no multiplicative inverse, this means that 

det(1 ± x) = 0. This also means that, for any Qq, since det(X)det(Y) = det(XY) = 0 then also 

det(Pk) = 0 and det(Rk) = 0.  

 

The scaling of Pk and Rk for any number of qubits works the same as for one qubit, except 

that the product of individual idempotent operators (–1) RAk RBk = PABk does not produce a 

larger idempotent term PABk because of non-commutativity. For example, the projector 

equation PAB0 =  (–1)(1 – a0)(1 – a1)(1 – b0)(1 – b1) = [–0000000 00000000] but that 

expression squared PAB0PAB0 = [–0+0+0+0 00000000]≠ PAB0 but instead (PAB0)4 =[–0000000 

00000000]. Likewise, for RABC0 = (RABC0)6 = [+0000000 0…0 0…0 0…0 0…0 0…0 0…0 

00000000] and RABCD0 = (RABCD0)8 = [+0000000 00000000 and thirty more of 00000000]. 

The conclusion of this result is that geometric products of idempotent operators produce new 

cyclic operators that have idempotent- like properties that return back to themselves when 

(X)n = X, except with a higher power where n = 2q, instead of always n = 2. This is related to 



 139 

the fact that the overall size of the space grows exponentially larger, resulting in more 

degrees of internal freedom. Also depending on the size of n, notice that sometimes (±1)2 = 

+1 and other times (±1)2 = –1. This proposed expanded cyclic definition of idempotency is 

interesting because these products still maintain the other important properties of logic AND 

decode of states and det(XY) = 0. 

 

Computing these products reveals that some sparse invariants −I  are idempotent: (PAB0)3 =  

–1 + a0 + b1 – a0 b1 = [–0–0–0–0 00000000],  (RABC0)5 = –1 + a0 + c1 – a0 c1 =  [–0–0–0–0 

–0–0–0–0 –0–0–0–0 –0–0–0–0 00000000 00000000 00000000 00000000] and (RABCD0)7 =   

–1 + a0 + d1 – a0 d1 = [16 of –0–0–0–0 and 16 of 00000000]. What this shows is that some 

idempotent operators (–1)(1–a0)(1–b1) = –1 + a0 + b1 – a0 b1 = [–000], when embedded 

into large spaces, are still idempotent even though their values are effectively spread 

throughout the space due to the effect of don’t cares for other unused inputs. 

 

The problem with the projection operators Pk not being exactly idempotent is that the 

corresponding Ek are not exactly eigenvectors for Q2. Many other solutions were found 

while using gasolve.pl to look for eigenvectors Ek where (Ek)2 = 1. Even though the Pk = –Rk 

are not exactly idempotent and the terms E0 = R0 – 1 = [ ]0− − − − − − − − − − − − − − −  still 

produce the matching filter expressions P0 = [–0000000 00000000] and R0 = [+0000000 

00000000]. Due to larger phase space, it is easy to show (Ek)6 = +1. Also the Rk produce 

valid measurement answers even for Bell states. For example, A0 B0 B = B0 = R1 –R2 +R4 –R7 

–R8 +R11 –R13 +R14. Measuring valid states in B0 produce invariant answers B0 R1 = R7 + R13 

and B0 R2 = P4 + P14, but invalid states produce random answers B0 R0 =P6 + R12. 



 140 

7.3 Three-Qubit Operators  

All operators for separable states for one and two qubits apply as well to three or more 

qubits. The four phase derivatives of the concurrent Hadamard operator for three spinors 

form the equivalent of the Bell and magic basis (SA ± SB ± SC) plus two additional sets. 

Additionally, the Fredkin and Toffoli gates (from Section 3.4) can finally be attempted, using 

the same design procedure developed for the control-not gate. 

7.3.1 Toffoli Gate in Q3 

The same procedure used to define the control-not gate was applied to the Toffoli gate. The 

process for three qubits utilized the following steps: 

1. Choose start state A1 B1 C1 and convert to Pauli basis: A1 B1 C1 PA PB PC = a1 b1 c1. 

2. Recreate state gag.pl "a1,b1,c1" "-0,+1,2,-3,+4,-5,-6,+7" = a1 b1 c1 

3. Invert the last two bits to create the desired end state 

gag.pl "a1,b1,c1" "-0,+1,2,-3,+4,-5,+6,-7"  
è + c1 + a1 c1 + b1 c1 - a1 b1 c1 
 

4. Solve for the operator to transition from the start state to the end state: 

gasolve.pl "a1,b1,c1" "(a1 b1 c1)(X)" "c1 +a1 c1 +b1 c1 -a1 b1 c1" 
Found Match for X = - 1 + a1 - b1 - a1 b1 
   

5. Factor this by hand (–1 + a1 – b1 – a1 b1) = (1 + b1)(–1 + a1) and verify 

Input expression is (1 + b1)(-1 + a1) 
INPUTS: a1 b1 | - 1 + a1 - b1 - a1 b1 | OUTPUT 
**************************************************************** 
ROW 00: - - | - - + - | + 
ROW 01: - + | - - - + | + 
ROW 02: + - | - + + + | - 
ROW 03: + + | - + - - | + 
**************************************************************** 
Row counts for outputs of ZERO=0, PLUS=3, MINUS=1 for TOTAL=4 rows. 
 

6. The square of this potential Toffoli Operator T should be unity or T T  = +1 

ga.pl table "(1 + b1)(-1 + a1)(1 + b1)(-1 + a1)" 
Input expression is (1 + b1)(-1 + a1)(1 + b1)(-1 + a1) 
INPUTS: a1 b1 | - 1 + a1 - b1 - a1 b1 | OUTPUT 
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**************************************************************** 
ROW 00: - - | - - + - | + 
ROW 01: - + | - - - + | + 
ROW 02: + - | - + + + | - 
ROW 03: + + | - + - - | + 
**************************************************************** 
Row counts for outputs of ZERO=0, PLUS=3, MINUS=1 for TOTAL=4 rows. 
 

 

Unfortunately, the result produced by using this process does not appear to be correct 

because the operator it found happens to be idempotent, which means multiple applications 

of it produce no net effect. Translating this operator back into the standard basis still leaves 

nothing more than Pauli inverse operator behavior for multiple applications. Consequently, 

this design approach will not work for idempotent operators. Moreover, the search space is 

too large with q=3 or n=6 to search the entire space using the gasolve.pl tool, as occurred for 

two qubits. 

 

Another approach utilized the Pauli basis to shrink the search space to the size of n = 3, 

looking at only the classical cases and then searching that space for operators where X2 = +1. 

Those solutions would be equivalent to eigenvectors for qutrits and possible candidates for 

Toffoli and Fredkin Gates. Starting with A1 B1 C1 PA PB PC = a1 b1 c1 and running the 

equation gasolve.pl "a1 b1 c1" "(X)(X)" "1" produced 92 possibilities out of 6560, many of 

which had already been found for a single qubit. The only new ones include all the vector 

and sign combinations of two basic forms (±a1 b1 ±a1 c1) = ±a1(±b1 ±c1) and sum of the 

other known eigenvectors (± a1 ± b1 ± c1 ± a1 c1 ± b1 c1) . The analysis of these two 

operators indicates they do not represent a Fredkin (or Toffoli) gates because the operator (a1 

b1 + a1 c1) is [–00++00–]. So (a1 b1 c1)(a1 b1 + a1 c1) = (b1 – c1) = [0+–00+–0] which 

isolates the important case when b1 and c1 are different but does not conditionalize it. 
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The another attempt assumes A = (± a0 ± a1) then (A)2 = –1 and (A)-1 = –A. So the Toffoli 

operator multivector T must satisfy the equation A1B1C1 T = (+1)(+1)C0 because both control 

qubits are rotated to direct basis and the data qubit inverts, while other cases are the identity.  

A1 B1 C0 T = (+1)(+1) C1 (or alternatively the inverse: A1 B1 C1 T = (+1)(+1)C0)     (7.1) 

To solve for T for each term, left multiply both sides by 1/X1 = X0 then simplify C1 C1 = –1 

T = C0 B0 A0 C1 = – A0 B0 C0 C1 = A0 B0  and also remember A1 B1 = A0 B0          (7.2) 

If the four classical decode cases {–A1 B1, –A1 B0, –A0 B1, A0 B0} are each solved for T, then 

the simultaneous solutions must be respectively {–A0 B0, A0 B0, A0 B0, A0 B0} = [–+++]A0 B0. 

These simultaneous solutions could be represented in matrices, but the operator must be 

applied conditionally to the isolated solutions, which means that the states must be 

discernible from each other.  This conditional application of operators is a fo rmal problem 

for implementing arbitrary logic in quantum systems, and may be related to not finding an 

operator that unconditionally performs the Toffoli operation. This is another case where 

conditional operators may be required to implement a particular operator and this particular 

operator cannot be expressed as a geometric product of multivectors. 

 

The final attempt succeeded by remembering the Toffoli operator is called the control-

control-not.  The approach is to concurrently take the control-not operator from two different 

control bits for register A B C then CNOTAC = A1 and CNOTBC = B0. The co-occurrence is 

TOFAB = CNOTAC + CNOTBC = –a0 + a1 + b0 – b1 and this is already looking good because 

TOF 2 = 1!  This promising result can now be applied to a real state: 

A0 B0 C0 TOFAB = a0 c0 – a0 c1 – a1 c0 + a1 c1 + b0 c0 – b0 c1 – b1 c0 + b1 c1 = 

= [00000+-0 0-+00000 0+-00-+0 00000+-0 0-+00000 0+-00-+0 00000+-0 0-+00000] (7.3)    
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The states for A0 B0 C0 TOFAB are analyzed in Table 7.10 and this produces the result that for 

the four states when qubits A and B are both classical, the output orientation is the same as 

qubit C for control states A0 and B0 and is inversion of qubit C for control states A1 and B1! 

 

Table 7.10 Valid State Rows for A0 B0 C0 TOFAB in Q3 

State Combinations Rowk 
a0 a1 b0 b1 c0 c1 

Active 
States 

A0 B0 C0 (TOFAB) 

R21 – + – + – + A1 B1 & C1 – 
R22 – + – + + – A1 B1 & C0 + 

Inverted 

R41 + – + – – + A0 B0 & C1 + 
R42 + – + – + – A0 B0 & C0 – 

Unitary 

8 rows Aclasssical Bsuperpose Cclassical Ac Bs & Cc ± 
8 rows Asuperpose Bclcassical Cclassical As Bc & Cc ± 

Mixed states 

44 rows All cases not covered above otherwise 0 Invalid  
 

7.3.2 Fredkin Gate in Q3 

The Fredkin gate design (from Section 3.4) was also attempted, but a problem occurred. 

First, assume three qubits in Pauli basis: A0 B0 C0 PA PB PC = – a1 b1 c1 and remember the 

goal is to swap the state of qubits B and C when qubit A has an active low value. This is 

shown in Figure 7.3 as rows 0-3, but only rows 1-2 are classically detectible.  

 
Input expression is (- a1 b1 c1) 
INPUTS: a1 b1 c1 | - a1 b1 c1 | OUTPUT 
**************************************************************** 
ROW 00: - - - | + | + 
ROW 01: - - + | - | - 
ROW 02: - + - | - | - 
ROW 03: - + + | + | + 
**************************************************************** 
ROW 04: + - - | - | - 
ROW 05: + - + | + | + 
ROW 06: + + - | + | + 
ROW 07: + + + | - | - 
**************************************************************** 
Row counts for outputs of ZERO=0, PLUS=4, MINUS=4 for TOTAL=8 rows. 

 

Figure 7.3: Fredkin Gate States for Q3 in Pauli Basis 
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Figure 7.3 illustrates the problem: independent of the states of B and C, the output state 

cannot distinguish between rows 01 and 02. This condition exists because the only 

observable change due to this gate requires that the data qubits have opposite values and then 

both are simultaneously and conditionally inverted. These two simultaneous inversions are 

equivalent to multiplying the overall system state by (–1)(–1) = +1. Therefore, this results in 

no net effect to the overall system state product except that the control qubit is constrained. A 

Fredkin gate solution F is A0 B0 C1 F = (+1) B1 C0, but the product of the two states is 

identical B0 C1 = B1 C0 = b0 c0 –b0 c1 –b1 c0 +b1 c1 = [00000+–0 0–+00000]. At the 

current time no Fredkin operator has been designed using Q3 due to the unresolved problem 

of general operator design or due to two outputs. This solution space is too large to search.  

 

7.3.3 Computational Basis for Three Qubits 

The computational basis operators Rk = (1±a0)(1±a1)(1±b0)(1±b1)(1±c0)(1±c1), Pk = –Rk 

and their relationships to Ek = Rk –1 continue to work for Q3 but (Ek)80 = +1. For example, 

R0 = [+0000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000] 

and E0 = [0------- -------- -------- -------- -------- -------- -------- --------]. 

 

7.3.4 Bell Basis for Three Qubits 

The Bell/magic operators and basis have previously been shown to work for any Qq. For 

three qubits, the four equivalent concurrent Hadamard operators are (a0 a1 ± b0 b1 ± c0 c1). 

Recursively applying them from a starting state A0 B0 C0 produces four separate sets of 
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positive/negative co-exclusion states as seen in Figure 7.4, using the vector output mode of 

the ga.pl tool.  It is now becoming very clear why the vector notation was adopted early. 

 

Generator polynomial for 5 iterations is (a0 a1 - b0 b1 - c0 c1)ç generator -- 
[-++-+00+ +00+-++- 0--0-++- -++-0--0 0--0-++- -++-0--0 -++-+00+ +00+-++-] 
Equation is (a0 - a1)(b0 - b1)(c0 - c1) times Generator ** n (with n = 1-5) 

0 [00000000 00000000 00000+-0 0-+00000 00000-+0 0+-00000 00000000 00000000] 
1 [00000+-0 0-+00000 0-+0-00+ +00-0+-0 0+-0+00- -00+0-+0 00000-+0 0+-00000] 
2 [0+-0+00- -00+0-+0 -00+0000 0000+00- +00-0000 0000-00+ 0-+0-00+ +00-0+-0] 
3 [00000-+0 0+-00000 0+-0+00- -00+0-+0 0-+0-00+ +00-0+-0 00000+-0 0-+00000] 
4 [0-+0-00+ +00-0+-0 +00-0000 0000-00+ -00+0000 0000+00- 0+-0+00- -00+0-+0] 
5 [00000+-0 0-+00000 0-+0-00+ +00-0+-0 0+-0+00- -00+0-+0 00000-+0 0+-00000] 

 
Generator polynomial for 5 iterations is (a0 a1 - b0 b1 + c0 c1)ç generator -+ 
[+--+0++0 0++0+--+ -00-+--+ +--+-00- -00-+--+ +--+-00- +--+0++0 0++0+--+] 
Equation is (a0 - a1)(b0 - b1)(c0 - c1) times Generator ** n (with n = 1-5) 

0 [00000000 00000000 00000+-0 0-+00000 00000-+0 0+-00000 00000000 00000000] 
1 [00000+-0 0-+00000 0-+0+00- -00+0+-0 0+-0-00+ +00-0-+0 00000-+0 0+-00000] 
2 [0+-0-00+ +00-0-+0 +00-0000 0000-00+ -00+0000 0000+00- 0-+0+00- -00+0+-0] 
3 [00000-+0 0+-00000 0+-0-00+ +00-0-+0 0-+0+00- -00+0+-0 00000+-0 0-+00000] 
4 [0-+0+00- -00+0+-0 -00+0000 0000+00- +00-0000 0000-00+ 0+-0-00+ +00-0-+0] 
5 [00000+-0 0-+00000 0-+0+00- -00+0+-0 0+-0-00+ +00-0-+0 00000-+0 0+-00000] 

 
Generator polynomial for 5 iterations is (a0 a1 + b0 b1 - c0 c1)ç generator +- 
[+00+-++- -++-+00+ -++-0--0 0--0-++- -++-0--0 0--0-++- +00+-++- -++-+00+] 
Equation is (a0 - a1)(b0 - b1)(c0 - c1) times Generator ** n (with n = 1-5) 

0 [00000000 00000000 00000+-0 0-+00000 00000-+0 0+-00000 00000000 00000000] 
1 [00000+-0 0-+00000 0+-0-00+ +00-0-+0 0-+0+00- -00+0+-0 00000-+0 0+-00000] 
2 [0-+0+00- -00+0+-0 +00-0000 0000-00+ -00+0000 0000+00- 0+-0-00+ +00-0-+0] 
3 [00000-+0 0+-00000 0-+0+00- -00+0+-0 0+-0-00+ +00-0-+0 00000+-0 0-+00000] 
4 [0+-0-00+ +00-0-+0 -00+0000 0000+00- +00-0000 0000-00+ 0-+0+00- -00+0+-0] 
5 [00000+-0 0-+00000 0+-0-00+ +00-0-+0 0-+0+00- -00+0+-0 00000-+0 0+-00000] 

 
Generator polynomial for 5 iterations is (a0 a1 + b0 b1 + c0 c1)ç generator ++ 
[0++0+--+ +--+0++0 +--+-00- -00-+--+ +--+-00- -00-+--+ 0++0+--+ +--+0++0] 
Equation is (a0 - a1)(b0 - b1)(c0 - c1) times Generator ** n (with n = 1-5) 

0 [00000000 00000000 00000+-0 0-+00000 00000-+0 0+-00000 00000000 00000000] 
1 [00000+-0 0-+00000 0+-0+00- -00+0-+0 0-+0-00+ +00-0+-0 00000-+0 0+-00000] 
2 [0-+0-00+ +00-0+-0 -00+0000 0000+00- +00-0000 0000-00+ 0+-0+00- -00+0-+0] 
3 [00000-+0 0+-00000 0-+0-00+ +00-0+-0 0+-0+00- -00+0-+0 00000+-0 0-+00000] 
4 [0+-0+00- -00+0-+0 +00-0000 0000-00+ -00+0000 0000+00- 0-+0-00+ +00-0+-0] 
5 [00000+-0 0-+00000 0+-0+00- -00+0-+0 0-+0-00+ +00-0+-0 00000-+0 0+-00000] 

 

Figure 7.4: Entangled Concurrent Hadamard States for Q3 

 

Each set of states acts like a single co-exclusion which represents only one classical bit for 

the three entangled qubits, thereby indicating that two bits are erased. These higher order 

Bell/magic states for Qq are generated using concurrent Hadamard gates just as with the two 

qubit Bell/magic states. Remember these states also act as the direct basis operators. 
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7.3.5 Three-qubit measurement 

The same Rk and Pk rules as two qubits apply for three or more qubits. Also (Ek)80 = +1. 

7.3.6 Example Quantum Computation 

The following sequence of steps is shown for using a Toffoli gate computation in Q3. All of 

the steps use an algebraic notation and have been validated using the ga.pl tool. 

1. Force the qubits to a known classical states by making a measurement, thereby erasing all 

the information content: A B C (1+a0)(1–a1)(1+b0)(1–b1)(1+c0)(1–c1)  => A0 B0 C0 = 

R21 + P22 + P25 + R26 + P37 + R38 + R41 + P42 

2. Assign specific values to qubits: A0 B0 C0 => A0 B0 C0 or A0 B0 C0 (SA SB)2
 => A1 B1 C0 

3. Apply the Toffoli operator to constrain the valid states A B C0 TOFAB => P21 + R22 + R41 

+ P42 + sixteen other rows for the superposition cases. 

4. Take a measurement using projection operator returns an answer that is a sparse 

invariant: A B C0 TOFAB P21 => R9 + R11 + R17 + R19 + R25 + R27 + R41 + R43 => I + and 

other case A B C0 TOFAB P42 => P20 + P22 + P36 + P38 + P24 + P44 + P46 + P52 + P56=>I  –. 

Other projection operators return random values due to a mixture of Pk and Rk values.  

 

The original goal of this dissertation was to include a description of quantum algorithms that 

outperformed their classical counterparts, such as Grover’s search algorithm or Quantum 

Fourier Transform (QFT) used by Shor’s algorithm. Unfortunately, the reality of the schedule 

did not permit this. The basic ground work for qubits, ebits, entanglement, Fourier basis, 

concurrency and measurement have however been developed, which should enable this work 

at a later time. This concludes the chapter on quantum computation.   
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CHAPTER 8  

SUMMARY AND CONCLUSIONS 

 

8.1 Summary of Contributions  

Many novel contributions from several different topic areas resulted from this effort. The 

following accomplishments are related exclusively to geometric algebra and logic tools. 

• Demonstrated that Boolean algebra operators can be represented as orthonormal 

vectors in linear algebras such as Galois Field- GF(2) and geometric algebra Gn using 

only the values {–1, 0 ,+1} and addition and multiplication operators. These algebraic 

representations are universal or Boolean complete. For Gn, multiplication is the 

XNOR operator, so for orthonormal vectors ie  then 1/i i=e e . Addition is both 

NAND-like and NOR-like. 

• Adopted and validated the interpretation of addition as concur rency (or co-

occurrence), and multiplication for state interaction and operator implementation. 

Mutually exclusive states are properly represented as additive inverses, = 0x + x , 

where the value of “0” is assigned the special meaning of “does not occur.” 

• Demonstrated that the linear matrix operators formed by only the input state vectors 

are not closed for all Boolean logic operators unless the size of the vector space is 

increased to include all product combinations of the input vector set as additional 
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linearly independent degrees of freedom. This set of N=2n elements can be generated 

as the sum of n orthonormal input vectors ie  using 
1

0

(1 )
n

i
i

−

=

+∏ e .  

• Demonstrated that the N=2n binary combinations of the input vector set for Gn 

represent linearly independent states and are equivalent to the grids of a logic decode 

Karnaugh map. Any particular linearly independent decode state can be expressed as 

the form 
1

0

( 1)(1 )
n

i
i

−

=

− ±∏ e . Additive combinations hereof produce the final multivector 

state. These linearly independent states represent the idempotent projectors Pk for G2 

that correspond to the pair-wise orthogonal eigenmultivectors Ek where Ek Pk = Pk Ek 

= Pk. 

• Demonstrated that (Pk)-1 does not exist, which indicates that det(Pk) = 0 even though 

the exact analytical form for the determinant of a multivector was not derived. 

• Demonstrated for G2 that the eigenmultivectors Ek = (±a0±a1±a0 a1) are simply the 

directed major diagonals of a cube of length 1N −  which form the equally spaced 

corners of dual tetrahedrons. The faces of these tetrahedrons represent the projection 

operators Pk with unitarity constraint 1kk
P = +∑  and their inverses Rk where 

1kk
R = −∑ . For any Gn then Rk = –Pk and Ek = Rk – 1. Showed that (Ek)2 = 1. 

• Demonstrated that the total number of unique multivectors for Gn is 3N, which is the 

ternary count enumerations {0, –, +} over the N=2n independent n-vector terms. 
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• Demonstrated that any state/operator S in Gn can be expressed using values kλ  as the 

matrix diagonals 
0

1

k

λ

λ

λ

 
 
 
 
 
  

...
 written as a vector [ ]0 1 ... kλ λ λ  or alternatively 

k k
k

S Pλ= ∑ . For G1 and G2 the kλ values are eigenvalues and the Ek are 

eigenmultivectors. 

• Demonstrated in G2 that for operators { , }gp∈ +W  the following relationships hold: 

[ ] [ ]a b c d w x y zW  [ ]a w b x c y d z= W W W W  for n-vectors. Multivectors 

can also be represented in this fashion but multiplication of multivectors must have 

precedence over n-vector addition in order to handle anti-commutative inversions 

correctly. 

• Demonstrated that geometric algebra rules and the above principles can be refined 

into tools that enable the design of state and operator behaviors. The tools ga.pl, 

gag.pl, gandg.pl and gasolve.pl were created and validated for this effort. The output 

vectors [ ]0 1 2 ...R R R  can be generated for any equation using the ga.pl tool. 

 

The next accomplishments are related to both geometric algebra and one qubit. These results 

demonstrate that geometric algebra can faithfully represent one qubit. 

• Demonstrated that a qubit can be expressed as the concurrent sum of two orthonormal 

vectors {a0, a1} for G2. This multivector (A = ± ±a0 a1)  represents a co-occurrence 
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and defines a quantum geometric algebra for one qubit Q1 = G2 = H2. There are 81 

possible states or operators for Q1 and they were all examined in detail. 

• Demonstrated that the standard basis containing two classical states is represented as 

0/1 (A = ±a0 a1)∓  and the dual basis with two alternate phase superposition states as 

/ (A+ − = ± ±a0 a1) . The spinor SA = (a0 a1) (also Hadamard operator or pseudoscalar 

IA) switches between the two mutually exclusive phases while the inversion operator 

flips between states within the same phase. The spinor SA is equivalent to 1A = −S  

since ( )2
1A = −S , or A NOT=S . 

• Demonstrated that the reversible basis operators for Q1 starting from the standard 

basis are: the Dual basis operator SA, the Pauli basis operator (–1 + SA), the circular 

basis operators a0 or a1, and the measurement operators 0/1A  or /A+ − . All of the 

reversible basis states map either to all even or to all odd grade planes. The non-

reversible computational basis operators are any of the combinations C±±  = 

(1±a0)(1±a1). The computational operators do not have multiplicative inverses 

implying that det( C±± )=0, which makes them irreversible. 

• Measurement using basis operators produces constants of ±1 or multivectors with 

50/50 percent random values. Some operators also result in sparse invariant values 

signified by +I  (equivalent to sparse +1) and -I  (equivalent to sparse –1) such that 

2 2( ) ( )= =- + +I I I . Individual states with value = 0 effectively cancel due to 

destructive interference and do not occur. 
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• Demonstrated that twelve non-constant idempotent operators (where X 2 = X) exist for 

Q1: 0
+I  =(–1±a0), 1

+I  = (–1±a1), and the eight combinations (–1±a0±a1±a0 a1), 

each of which has one of the other four +I  operators as a factor.  The inverses (or 

square roots) of these operators all have the idempotent property X 2 = – X = X + X. In 

addition, the invariant inversion operators 0
+I  = (1±a0), 1

+I  = (1±a1) both have the 

property 2( ) =- +I I . Multiple equations for +I  and -I  exist with opposite phases. 

Other results are related to both quantum geometric algebra and two qubits Q2. 

• Demonstrated that multiple qubits can be expressed as the product of single qubits 

( (A B = ± ± ± ± ± ± ± ±a0 a1) b0 b1)= a0 b0 a1 b0 a0 b1 a1 b1  thereby defining Q2 = 

G4 = H4. There are 43,046,721 possible states or operators for Q2 and several 

important identities were found by exhaustively searching with gasolve.pl (in less 

than five days). The Qn algebra may be related to Symplectic Clifford algebras. 

• Demonstrated that the geometric product for Qq replaces the tensor product ⊗  of 

HN since the normal multiplication of co-occurrences naturally generates all the 

product combinations. 

• Demonstrated that if , ,A B C  are in standard or dual basis with A B X C=  then, 

using left multiplication, ( )( )X B A C BAC ABC= − − = = −  because 2 1A = −  or 

( )( ) 1A A− =  or 1A A− = − . For vectors where 1/x = x then with a b x = c using left 

multiplication also x = b a c = – a b c.  However, this relationship depends on the 

number and order of terms. 
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• Exhaustively demonstrated that the concurrent Hadamard operator (SA + SB) does not 

have a multiplicative inverse, rendering it irreversible and states that can never be 

exited. Recursively applying this operator generates the four Bell states B i so that the 

concurrent Hadamard operator defines the Bell operator B = (SA + SB). Applying the 

operator –B cyclically generates the Bell states in the opposite order. 

• Demonstrated that recursively applying the operator (SA – SB) cyclically generates the 

four magic states M i so the concurrent Hadamard difference defines the magic 

operator M  = (SA – SB). 

• Demonstrated that Bell and magic states each represent only one co-exclusion, rather 

than two, due to the erasure of one bit of information. Also 2( ) = -B I  and alternate 

phase 2( ) = -M I  where 2 2( ) ( )= =- + +I I I . The following square roots are also 

defined:  2 −= + = +B B B I B  and 2 −= + = +M M M I M . 

• Demonstrated that the Bell and magic operators erase state information due to 

multiplicative cancellation of some states: B (–1 – SA SB) = M (–1 + SA SB) = 0, 

which means these states “cannot occur” in the result. These operators are idempotent 

regarding erasure. 

• Demonstrated that Bell and magic operators can act as their own measurement 

operators, producing results that represent the sparse invariant constant values ±I . 

• Demonstrated that the control-Hadamard operator has definition CHADAB = (–1 + A0) 

= (–1 + a0 – a1) and control-not is CNOTAB = A0 = (a0 – a1) with properties 
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(CHADAB)2 = CNOTAB and (CNOT)2 = –1. The B  and M  represent the control-

Hadamard operators for Bell/magic states. 

• Demonstrated that the idempotent operators Pk for Q1 where (Pk)2 = Pk, when 

multiplied together for Qq=2 form cyclic operators where (Pk)2q = Pk. Also showed for 

Qq=2  that (Ek)6 = 1. 

 

Other results are related to quantum geometric algebra and three or more qubits. 

• Demonstrated that in general Qq = Gn=2q = HN where q = n/2 is the number of qubits 

in the quantum register, n is the number of orthonormal vectors, and N=2n is the size 

of overall generated vector space. There are (43046721)4 = 3.4 x 1030 possible states 

or operators for Q3, but very few of them were examined. 

• Demonstrated that all combinations of (SA ± SB ± SC ± … ± SZ)  produce orthogonal 

phase encodings equivalent to the Q2 Bell and magic states, with (q–1)2 variations 

for Qq. It still must be proven that these states do not have multiplicative inverses.  

• Proved that the concurrent Hadamard transform (SA + SB + SC + … + SZ)  has the 

property (SA + SB + SC + … + SZ)2 = -I  for any number of qubits q. The only valid 

states are those with a single qubit in the superposition state with all other qubit states 

in classical phases. 

• Showed the Toffoli operator T is equivalent to the concurrent control-not and T 2 = 1 

• Was unable to design the Fredkin operators in Q3, which may require use of an inner 

product, a space larger than Q3, or some other general linear operator mechanism. 
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These reversible gates are primarily concerned with implementing classical logic 

gates within quantum systems and so represent a somewhat different technological 

tack from the remainder of this work. 

• Demonstrated that the idempotent operators Pk for Q1 where (Pk)2 = Pk, when 

multiplied together for Qq=3,4 form cyclic operators (Rk)2q = Rk where Rk = –Pk. Also 

showed for Qq=3  that (Ek)80 = 1 but did not find the eigenvector power for Qq=4. 

 

8.2 Conclusions 

This dissertation focused primarily on the representation of, and tools for, a quantum 

geometric algebra Qn, where a single qubit is defined as Q1. Applying Manthey’s co-

occurrence and co-exclusion perspective to this novel symmetric representation of qubits led 

to a consistent and meaningful interpretation when deriving new states and operators. All the 

relevant quantum computing concepts related to a qubit were described using these new 

geometric algebra definitions and framework. The new tools helped to deal automatically 

with the complexities of geometric algebra and enabled the automatic simplification and 

interpretation of complex geometric algebra expressions. The majority of the fundamental 

mathematical properties defining quantum computing were derived using the above 

infrastructure, and without using the traditional, unintuitive, complex-valued, matrix notation 

of Hilbert spaces. It appears that Q1 does faithfully represent the state, operators, properties, 

and measurement principles of a single qubit.  
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The behavior of multiple qubits was also explored and the geometric product was shown to 

be equivalent to the tensor product, thereby defining the quantum geometric algebra Qq as a 

quantum register of size q qubits. An ebit formed by entangling any number of qubits was 

simply derived using the recursive concurrent Hadamard operator and produced the 

appropriate Bell and magic states. In spite of the growth of the size of the Qq, the tools were 

able to perform some computations for >10 qubits and exhaustively prove some properties 

for two qubits. All of the well known operators for one and two qubits were derived. 

8.3 Future Effort 

The definition of a quantum geometric algebra for representing qubits and ebits, along with 

the corresponding prototyping tools, is obviously just the beginning. Many of the remaining 

mathematical holes in the formal definition in Qq need to be explored (by more formally 

trained mathematicians) such as determinants, multiplicative inverses of multivectors, 

Fredkin gate, Quantum Fourier Transforms, density operators, super-operators and 

probability densities, to name just a few. Also the next generation of tools could give more 

functionality and greater capacity for larger systems.   
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APPENDIX A  

FREDKIN GATE USING GALOIS FIELD(2) 

 
Fredkin gate is a universal reversible gate with three inputs [c b a] and three outputs [C B A] 

written as basis vectors using values {0,1}. When the control line c = 1 the other two inputs 

simply pass through to the corresponding output, so A = a and B = b. When the control line c 

= 0, then the two inputs cross to the other output, so A = b and B = a.  The control line C 

always just passes through, so C = c.  This gate is reversible where inputs and outputs can be 

swapped. Below is the Fredkin Gate truth table and gate symbol. 

 

Table A.1 Fredkin Gate Logic 

c b a C B A Observable? Logic relationships Fredkin Gate Symbol 

0 0 0 0 0 0 same AND/OR 
0 0 1 0 1 0 visible XOR, AND/OR  
0 1 0 0 0 1 visible NOT, XOR 
0 1 1 0 1 1 same same 
1 0 0 1 0 0 same same 
1 0 1 1 0 1 same XOR 
1 1 0 1 1 0 same NOT, XOR, AND/OR  
1 1 1 1 1 1 same AND/OR 

 

 

A Fredkin gate is universal and can emulate any logic gates using the following rules. 

When a = 0, b = 1 then A = !c and B = c, which is a NOT/DUP gate. 

When c = b then A = a AND b, and B = a OR b which is an AND/OR gate. 

When a = !b then A = a XOR b, and B = a XNOR b which is an XOR/XNOR gate. 

 

a   

b 

c 

A 

B 

C 
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Matrix representation of Fredkin Gate using Galois Fields  

 

Finally enough groundwork is in place to write the definitions of a reversible gate using a 

matrix notation. This paper uses the mathematical notion where square braces represent 

vectors and matrices. Below is the derivation of matrix notation for a Fredkin gate. The 

binary values of {0, 1} are only allowed values. 

 

When the control line c = 1, then the transformation is just the identity matrix as below: 

[ ] [ ]















=

100
010

001

*abcABC                                           (A.1) 

When the control line c = 0, then the transformation is the "a" swap "b" matrix as below: 

[ ] [ ]















=

010
100

001

*abcABC                                          (A.2) 

Combining these two results produces the following operator written as a conditional result. 

Notice how even at this early stage, the conditional terms based on "c" inside the matrix 

makes questionable the goal of a linear result. 

[ ] [ ]















=

cc
ccabcABC

!0
!0

001

*                                       (A.3) 

Now remove the constant columns and rows due to C = c and rewrite to get: 
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[ ] [ ] 















+








=

01
10

*!
10
01

** ccabAB                                 (A.4) 

In GF(2) due to XOR nature of addition, can rewrite using !c = c + 1: 

[ ] [ ] 















+








+








=

01
10

*1
01
10

*
10
01

** ccabAB                       (A.5) 

Now combine for the common product term "c": 

[ ] [ ] 















+








=

01
10

11
11

** cabAB                                           (A.6) 

Then multiply completely out to show the final formula in linear matrix notation: 

[ ] [ ] [ ] 







+








=

01
10

*
11
11

* abacbcAB  (where bc = b c = b * c)  (A.7) 

Notice how the original input basis dimensions of "a" and "b" have increased to include some 

new input basis terms formed by their product with input term “c”. Combining this entire 

basis set into a single basis vector produces the following matrix operation for the two 

switched outputs of the Fredkin gate. 

[ ] [ ]


















=

01
10
11
11

*abacbcAB                                           (A.8) 

 

Now by including the original term C = c the final matrix notation is produced with all the 

additional basis terms, which are each products of some combinations of the original input 

basis terms.  
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[ ] [ ]























=

010
100
001
110
110

*abcacbcABC                             (A.9) 

 

These additional terms are required in order to express Fredkin gates in a linear matrix 

format using GF(2). As will be shown later in general all input terms and all product 

combinations of input basis (plus the number 1) are required to be included in the new basis 

set for expressing any Boolean equation as reversible universal gates (such as Fredkin or 

Toffoli gates) in matrix notation. This similar result will resurface again later using 

Geometric Algebra, so this exercise is important to introduce in the simpler GF(2). 

 

The individual output terms from equation (A.9) can be written out using Galois field 

notation: 

 A = b c + a c + b      

 B = b c + a c + a                                                                                                    (A.10) 

 C = c  

Now the usual Boolean logic operations can be double checked using the symmetrical 

equations (A.10). The following result shows for primitive Boolean expressions that the 

increase in number of dimension can be proportional to number of logic “AND” plus number 

of logic “OR” terms in the overall equation. Both the individual equations and matrix format 

are shown for each logic operation. 
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For NOT gate where b = 1 and a = 0 are substituted into equations (A.10) then: 

 A = 1*c + 0*c + 1 = c + 1  = NOT c 

B = 1*c + 0*c + 0 = c  = DUP c 
(A.11) 

[ ] [ ] [ ] 







=



















=
100
111

*

000
000
111
100

*1 bcabcABC   (where b = 1) 

   

For AND/OR gate where c = b then: (with b*b = b and b+b = 0)  

 

 A = b*b + a*b + b = b + b + a*b   =  a*b  = a AND b      (depends on a*b) 

B = b*b + a*b + a = a + b + a*b  = a OR b         (depends on a*b) 
(A.12) 
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For XOR gate where a = !b = b + 1 then:  [rewrite b*c + b = b*(c+1) = b*!c] 

      (the a = !b is created with an extra NOT gate) 

 A = b*c + !b*c + b   = b*!c + !b*c        = b + c         = b XOR c 

B = b*c + !b*c + !b  = b*!c + !b*c + 1  = b + c + 1  = b XNOR c 
(A.13) 
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*1 bcABC    (matrix represents two gates) 

This result shows that logic "AND" and logic "OR" both depend on the equivalent local 

product of "a b" as an addition basis vector to represent arbitrary Boolean equations in linear 

matrix format. This property is related to the property of reversibility, since "AND" and 
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"OR" throw away information about the inputs unless additional bits are carried through to 

other outputs of the computation. These new basis terms required for matrix format, are truly 

linearly independent terms for these operators, otherwise the overall result would not be 

linear for "AND" and "OR" gates. 

 

It turns out the "a b" product term is just another way to look at the conditional cont rol 

variable "c" in equation (A.1). This is understandable in vector terms if the AND gate case is 

analyzed in equations (A.12). The "a b" product term is required to make the four input states 

be independent of the other states {0, a, b}. This is true because the "a b" product is 

dependent on both inputs a and b, so can not be linearly independent on both simultaneously. 

By thinking about this geometrically, then the number of dimensions must be expanded to 

deal linearly with this codependency.  
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APPENDIX B  

PERL SOURCE CODE FOR GA.PL TOOL 

#!/usr/bin/perl 
#!/usr/local/bin/perl 
#usage: ga.pl <table|zero|vector|inner|outer> <expression> 
#Geometric algebra parsing, normalization, products and simplification 
#routines supporting non-commutative products where a*a = 1 and a*b=-b*a  
#and mod 3 arithmetic with 2=-1 
 
@myargs = @ARGV; 
 
$hush = 0; 
$verbose = 0;  #for debugging only 
$nosimplify = 0; 
$evaluate_table = 0; 
$printfunction = 0; 
$showzeros = 0; 
$innerproduct = 0; 
$outerproduct = 1; #default is really the geom prod unless next flag set 
$term_squared_zero = 0;  #test since out prod a^a=0 but a^a^b is still = b  
$term_squared=1; #controls if a*a=1 (default) or a*a=-1 (using minus flag) 
$time_basis = "";   # indicate time=token variable 
 
%dimnames = (); 
%all_terms = (); 
$use_all_terms; 
$right_hand_rule = 0;  #don't set this unless experimentation 
 
$first_term = ""; 
$last_term = ""; 
 
while ($arg = $myargs[0]) {  #must put all control parameters first 
  if ($arg =~ /simplif/i) { 
    $nosimplify = "ON"; 
    print "ENABLED parameter: no simplification\n" if $verbose; 
    shift @myargs; 
    next; 
  } elsif ($arg =~ /table/i) { 
    $evaluate_table = "ON"; 
    print "ENABLED parameter: table\n" if $verbose; 
    shift @myargs; 
    next; 
  } elsif ($arg =~ /verbose/i) { 
    $verbose = "ON"; 
    print "ENABLED parameter: verbose\n" if $verbose; 
    shift @myargs; 
    next; 
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  } elsif ($arg =~ /function/i) { 
    $evaluate_table = "ON"; 
    $printfunction = "ON"; 
    print "ENABLED parameters: table and show function\n" if $verbose; 
    shift @myargs; 
    next; 
  } elsif ($arg =~ /zero/i) { 
    $evaluate_table = "ON"; 
    $showzeros = "ON"; 
    print "ENABLED parameters: table and show zeros\n" if $verbose; 
    shift @myargs; 
    next; 
  } elsif ($arg =~ /vector/i) { 
    $evaluate_table = "ON"; 
    $vector_result = "ON"; 
    print "ENABLED parameters: zeros & show vector result\n" if $verbose; 
    shift @myargs; 
    next; 
  } elsif ($arg =~ /quiet/i) { 
    $hush = "ON"; 
    print "ENABLED parameter: quiet\n" if $verbose; 
    shift @myargs; 
    next; 
  } elsif ($arg =~ /left/i) { 
    $right_hand_rule = 0; 
    print "DISABLED parameter: right\n" if $verbose; 
    shift @myargs; 
    next; 
  } elsif ($arg =~ /right/i) { 
    $right_hand_rule = 1; 
    print "ENABLED parameter: right\n" if $verbose; 
    shift @myargs; 
    next; 
  } elsif ($arg =~ /minus/i) { 
    $term_squared = -1; 
    print "ENABLED parameter: minus\n" if $verbose; 
    shift @myargs; 
    next; 
  } elsif ($arg =~ /all/i) { 
    $use_all_terms = 1; 
    print "ENABLED parameter: all\n" if $verbose; 
    shift @myargs; 
    next; 
  } elsif ($arg =~ /outer/i) { 
    $term_squared_zero = 1; #force computation of standalone outer product 
    $outerproduct = 1; 
    $innerproduct = 0;    print "ENABLED parameter: outer\n" if $verbose; 
    shift @myargs; 
    next; 
  } elsif ($arg =~ /inner/i) { 
    $outerproduct = 0; 
    $innerproduct = 1; 
    print "ENABLED parameter: inner\n" if $verbose; 
    shift @myargs; 
    next; 
  } elsif ($arg =~ /geom/i) { 
    $term_squared_zero = 1; #forces GP as sum of real inner & outer prod 



 164 

    $outerproduct = 1; 
    $innerproduct = 1; 
    print "ENABLED parameter: geometric\n" if $verbose; 
    shift @myargs; 
    next; 
  } elsif (($value) = ($arg =~ /time=(.+)/i)) { 
    $time_basis = $value; 
    print "ENABLED parameter: time=$value\n"; 
    shift @myargs; 
    next; 
  } else { 
    last; 
  } 
} 
if (scalar @myargs == 0) { 
  #print "Please type in expression:\n"; 
  $inputerm = <STDIN>;  #if no args passed then read from standard input 
  chomp $inputerm; 
  @myargs = ($inputerm); 
  #print "FOUND =$inputerm=\n"; 
} 
 
 
$sum_resultsp = scalar(@myargs) > 1; 
$sum_results = ""; 
#default table input terms if expression simplifies to constant. 
map { &all_terms($_) } @myargs;   
if ($right_hand_rule){ 
  foreach $term (&sort_terms(keys %all_terms)) { 
    $first_term = $term unless $first_term; 
    $last_term = $term;  #leaves last value set in variable 
  } 
} 
#print "First=$first_term and Last=$last_term\n" $if $verbose; 
 
print "Input expression is ", join(" + ", @myargs), "\n" unless $hush; 
#all args are simplified and then summed together  
while ($eqn = shift @myargs) {  
  @prod_terms = &parse_products($eqn); 
  if (scalar @prod_terms > 1) { 
    $results = &tensor_products(@prod_terms); 
    #print "Tensor Product of $eqn is:\n   $results\n"; 
  } else { 
    $results = join(" ", &simply_equ(&parse_equ($prod_terms[0]))); 
    #print "Eqn \"$prod_terms[0]\" in normalized form is:\n $results\n"; 
  } 
  print "$results\n" unless $evaluate_table || $sum_resultsp; 
  if ($sum_resultsp) { 
    $sum_results .= " " . $results; 
  } else { 
    &evaluate_table($results); 
  } 
} 
#then simply sum of separate partial results and print final results 
if ($sum_resultsp) {   
  $combined = join(" ", &simply_equ(&parse_equ($sum_results))); 
  print "$combined\n" unless $evaluate_table; 
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  &evaluate_table($combined); 
} 
 
sub all_terms { 
  my ($string) = @_; 
  my ($term); 
  $string =~ s/\+/ /g; 
  $string =~ s/\-/ /g; 
  $string =~ s/\(/ /g; 
  $string =~ s/\)/ /g; 
  $string =~ s/^ +//g; 
  $string =~ s/ +$//g; 
  foreach $term (grep { /\D/ } split(/ +/, $string)) { 
    $all_terms{$term} = "INPUT"; 
  } 
} 
sub parse_equ {  #first split up terms, then normalize and sort 
  my($equstring) = @_; 
  my(@rawterms, @terms); 
  $equstring =~ s/^ +//; 
  $equstring =~ s/ +$//; 
  #add ":" before + or - to aid in splitting and force space after  
  $equstring =~ s/([+-])/\:$1 /g;   
  $equstring =~ s/ +/ /g;  #remove redundant spaces 
  (@rawterms) = split /:/, $equstring; 
  #remove empty term caused by leading + or – 
  shift(@rawterms) unless $rawterms[0];   
  (@rawterms) = map { &normalize_token_order($_) } @rawterms; 
#sort terms based on # of terms & then alphabetic sort while ignoring sign 
  return &sort_terms(@rawterms); 
} 
 
#WARNING: parsing does not take precedence of products over addition  
#so a + b (d + e) == (a + b)(d + e) 
sub parse_products { #parses products based on parens  
  my($eqnstring) = @_; 
  my(@prodterms, $newterm, $begin, $rest); 
  #look for parens to indicate product terms are present  
  if ($eqnstring =~ /[()]/ ) {   
    #find terms within parenthesis and remove parens  
    while (($newterm) = $eqnstring =~ /\((.+?)\)/ ){   
      $begin = $`; 
      $rest = $';  
      # allow terms can be seperated by parens but not enclosed 
      push(@prodterms, $begin) if $begin =~ /\w+/;  
      push(@prodterms, $newterm); 
      $eqnstring = $rest; 
    } 
    #allow nonparens at end 
    push(@prodterms, $eqnstring) if $eqnstring =~ /\w+/;   
    return @prodterms; 
  } else { 
    return ($eqnstring); 
  } 
} 
 
sub tensor_products { #makes one or more tensor/ combination product 
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  my(@producterms) = @_; 
  #print "here are product terms =", join("==", @producterms), "=\n"; 
  my($lastresult) = shift @producterms; 
  my(@resulterms, $eqnstring); 
  while ($eqnstring = shift @producterms) { 
    (@resulterms) = &product_combinations ($lastresult, $eqnstring); 
    $lastresult = join(" ", @resulterms); 
  } 
  return $lastresult 
} 
 
#expand product combinations using appropriate inner/outer product 
sub product_combinations {  #makes one tensor/combination product 
  my($string1,$string2) = @_; 
  my(@list1, @list2, $item1, $item2); 
  my($sign, $product, $stop, @tokens); 
  my($sign1, $sign2, @tokens1, @tokens2, @result); 
  (@list1) = &parse_equ($string1); 
  (@list2) = &parse_equ($string2); 
  foreach $item1 (@list1) { #all combinations of list items 
      foreach $item2 (@list2) { 
        #allow inner, outer or both for geometric product 
        ($sign1, @tokens1) = &sign_and_terms($item1); 
        ($sign2, @tokens2) = &sign_and_terms($item2); 
        if ($outerproduct) {  #then concatenate tokens for outer product 
            $sign = &sign_product($sign1,$sign2); 
            @tokens = grep { $_ ne "1" } (@tokens1, @tokens2); 
            $product = &normalize_token_order("$sign @tokens"); 
            push(@result, $product); 
        } 
        if ($innerproduct) { 
            if (scalar @tokens1 > scalar @tokens2) { #shortest list in @t1 
                @temp = @tokens1; 
                @tokens1 = @tokens2; 
                @tokens2 = @temp; 
            } 
            #normalize order for each else final sign 
            ($sign1, @tokens1) = &sign_and_terms( 
                               &normalize_token_order("$sign1 @tokens1")); 
            ($sign2, @tokens2) = &sign_and_terms(                       
                               &normalize_token_order("$sign2 @tokens2")); 
            $sign = &sign_product($sign1,$sign2);  
            #iterate from end while reducing grade 
            foreach $vector (reverse @tokens1){  
                ($stop, $sign, @tokens2) =  
                                   &dot_product($sign, $vector, @tokens2); 
                last if $stop; 
            } 
            if (! $stop) { 
                $product = "$sign @tokens2"; 
                push(@result, $product); 
            } 
         } 
      } 
  } 
  $bigresult = join(" ",@result); 
  #print "Terms are $bigresult\n"; 
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  return &simply_equ(&parse_equ($bigresult)); 
  #return &parse_equ($bigresult); 
} 
 
sub dot_product { 
    my($sign, $vector, @tokens) = @_; 
    my($swaps) = 0; 
    my($token, @scanned); 
    #print "Dot product of \"$sign\" \"$vector\" for \"@tokens\"\n"; 
    #if scalar (or empty) then result is 0 
    return ("STOP", $sign)  if ($vector eq "1");   
    while ($token = shift @tokens) { 
      if ($vector eq $token) { 
          $flipsign = &oddp($swaps) ? "-" : "+"; 
          $sign = &sign_product($sign, $flipsign); 
          return ("", $sign, @scanned, @tokens); #exclude this token 
      } 
      $swaps = $swaps + 1; 
      push(@scanned, $token); 
    } 
    return ("STOP", $sign);  #else not found so result is 0 
} 
sub sign_product { 
    my($sign1, $sign2) = @_; 
    my($newsign) = "+"; 
    if (($sign1 eq "-") || ($sign2 eq "-")) { 
      $newsign = "-" unless ($sign1 eq $sign2); 
    } 
    return $newsign; 
} 
sub simply_equ {  #this implements mod 3 arithmetic where 2 => -1; 
  my(@terms) = @_; 
  if ($nosimplify) { 
    return &sort_terms(@terms); 
  } else { 
    my($term, $count, @tokens, $tokens, $final_count); 
    my(@final_result, %sameterms); 
    foreach $term (@terms){ 
      ($count, @tokens) = &number_and_terms($term); 
      map { $dimnames{$_} = "YES" } @tokens; 
      $tokens = join " ", @tokens; 
      #print "Processing term =$term= into $count and $tokens\n"; 
      $sameterms{$tokens} = $sameterms{$tokens} + $count;  #incr or decr 
    } 
    foreach $term (keys %sameterms){ 
      $final_count = $sameterms{$term} % 3; 
      if ($final_count) { 
 push(@final_result,(($final_count == 1) ? "+" : "-") . " " . $term); 
      } 
    } 
    return (0) unless @final_result; 
    return &sort_terms(@final_result); 
  } 
} 
 
$entries_printed = 0;  #used to suppress multiple unnecessary dividers 
$stars = "****************************************************************"; 
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sub evaluate_table { 
  my($equation) = @_; 
  #only non-numeric variable names 
  my(@dnames) = sort { $a cmp $b} (grep { /\D/ } keys %dimnames);   
  if((! $hush) && $evaluate_table) { 
    print "Using all INPUT KEYS of: ", join " ", (sort keys %all_terms), 
          "\n" if ($use_all_terms || ! @dnames); 
  } 
  #use all terms from input expression if constant output expression. 
  @dnames = sort keys %all_terms if ($use_all_terms || ! @dnames);   
  my($dcount) = scalar @dnames; 
  my($maxcount) = 2 ** $dcount; 
  my($diterate, @sum_terms, $nonzero_rows, $plus_rows); 
#print "FOUND unique terms @dnames from =",join("=",keys %dimnames),"=\n"; 
  if ($evaluate_table && $dcount) { 
    #disables right hand rule fixup for parse_equ, since already done 
    #$right_hand_rule = 0;       
    @sum_terms = &build_exp($equation, @dnames); 
    if ($vector_result) { 
      print "["; 
    } else { 
      print "Logic table with $maxcount entries with columns INPUTS ", 
            "| PRODUCTS | OUTPUT\n" if $verbose; 
      print "INPUTS: @dnames | @sum_terms | OUTPUT\n"; 
      $entries_printed = 1;  #controls row divider printing 
    } 
    while ($maxcount > $diterate ) { 
      #print "ROW ", $diterate || "0", "\n"; 
      if ($value = &evaluate_row($diterate, $dcount)) { 
 $nonzero_rows++; 
 $plus_rows++ if ($value eq "+"); 
      } 
      $diterate++;     
    } 
   if ($vector_result) { 
      print "]\n"; 
   } else { 
    print "$stars\n" if $entries_printed; 
    print "Row counts for outputs of ZERO=",  $maxcount - $nonzero_rows,  
          ", PLUS=", $plus_rows || "0", 
          ", MINUS=", ($nonzero_rows - $plus_rows) || "0",  
          " for TOTAL=$maxcount rows.\n\n\n" if $nonzero_rows; 
   } 
  } 
} 
 
sub evaluate_row { 
  my($rowcount, $width) = @_; 
  my($original) = $rowcount || "0"; 
  my($result, @signs, @inputs); 
  @inputs   = &binary_explode($rowcount, $width); #returns values of 0,1,2  
  @signs    = &sign_conversion(@inputs); 
  ($result,@products) = map {&sign_conversion($_)} &evaluate_exp(@inputs); 
  if ($vector_result) { 
     my($spacer) = ""; 
     if ($rowcount) {$spacer = " " if ($rowcount % 8) == 0;} 
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     print "$spacer$result"; 
     return $result; 
  } 
  if (($original % 4) == 0) {  #print dividers every four entries 
    print "$stars\n" if $entries_printed; 
    $entries_printed = 0;  #reset count if just printed divider. 
  } 
  $original = "0$original" if $original < 10; 
  if ($showzeros || ($result ne 0)) { 
    print "ROW $original: @signs | @products | $result\n"; 
    $entries_printed++;  #increment enables printing of trailing divider 
  } 
  return $result; 
} 
 
sub build_exp { #build custom func on the fly for &evaluate_exp using eval 
  my($equation, @dnames) = @_; 
  my(@sum_terms); 
  @sum_terms = &parse_equ($equation);  
  #only non-numeric variable names 
  $inputnames = join(",", map { "\$" . $_  } @dnames);   
  $prodexpression = join(",", map { &build_prodterm($_) } @sum_terms); 
  $function = <<EOFUNCTION; 
sub evaluate_exp { 
  my ($inputnames) = \@_; 
  my (\@products) = ($prodexpression); 
  return (&cadd(\@products), \@products); 
} 
EOFUNCTION 
  print "BUILDING function:\n$function" if $printfunction; 
  eval $function;  ##redefine the evaluation function using eval 
  return @sum_terms; 
} 
 
sub evaluate_exp { #default dummy func will be redefined by &build_exp 
  #my($a0, $a1, $x0, $x1) = @_; 
  #my(@products) = (&cmult("-",$a0,$x0),&cmult("-",$a0,$x1), 
  #                 &cmult("-",$a1,$x0),&cmult("-",$a1,$x1)); 
  #return &cadd(@products); 
  return 1; 
} 
 
sub build_prodterm { 
  my($arg) = @_; 
  my($sign, @terms, @vars); 
  ($sign, @terms) = &sign_and_terms($arg);  
  #if non-numeric then create var, else leave as number 
  @vars = map { /\D/ ? ("\$" . $_) : $_  } @terms;   
  return "&cmult(\"$sign\"," . join(",", @vars ) . ")";  
} 
 
#mod 3 mult used by evaluate_table and evaluate_row and evaluate_exp  
sub cmult {   
  my($msign, $first, @mterms) = @_; 
  my($result) = $first; 
  my($term); 
  print "WARNING: cmult passed $result\n" if $result < 0 || $result > 3; 
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  foreach $term (@mterms) { 
    print "WARNING: cmult passed $term\n" if $term < 0 || $term > 3; 
    $result = ($result * $term) % 3;  #mod three multiplication 
  } 
  if ($msign eq "-") { 
    $result=($result == 1)? 2 : 1; #invert swaps between values 1 and 2=-1 
  } 
  #print "TRACE product of $msign $first @mterms gives $result\n"; 
  return $result; 
} 
#mod 3 addition used by evaluate_table and evaluate_row and evaluate_exp 
sub cadd {    
  my(@addterms) = @_; 
  my($result); 
  my($term); 
  foreach $term (@addterms) { 
    print "WARNING: cadd passed $term\n" if $term < 0 || $term > 3; 
    $result = ($result + $term) % 3;  #mod three addition 
  } 
  #print "TRACE add of @addterms gives $result\n"; 
  return $result; 
} 
#converts +1 => + and 2 => - and leaves others alone for debug 
sub sign_conversion {   
  my(@terms) = @_; 
  return map {if ($_ == 1){  "+" } elsif ($_ == 2) { "-" } else {$_ }} 
             @terms; 
} 
 
sub binary_explode {   
  my($integer, $width) = @_; 
  my(@results); 
  while ($width) { 
    #values 0 and 1 converted to -1=2 and 1 
    unshift (@results,($integer & 1) || 2);  
    $integer = $integer >> 1; 
    $width--; 
  } 
  return @results; 
} 
 
sub sort_terms {  
  my(@terms) = @_; 
  if ($nosimplify) { 
    return @terms; 
  } else {         #fewest number of product terms as first sort criteria 
    return sort { ($a =~ s/ / /g) <=> ($b =~ s/ / /g) ||  
                  #then alphabetically next criteria  
        (substr($a,2)   cmp substr($b,2))   || 
                  #then sign as last criteria   
        (substr($a,0,1) cmp substr($b,0,1))  
      } @terms;   
  } 
} 
 
sub normalize_token_order { 
  my($tokenstring) = @_; 
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  my($sign, @tokens, @results); 
  ($sign, @tokens) = &number_and_terms($tokenstring); 
  my($count) = scalar(@tokens) - 1; #upper offset into array (zero based) 
  my($upper, $this, $next, $result, %termcount); 
  #print "Count = $count for @tokens\n"; 
  if ($count) { 
    #this is a bubble sort to guarantee adjacent swaps for non-assoc 
    foreach $upper ($count .. 1) {  
      foreach $this (0 .. $upper-1) { 
 $next = $this + 1; 
 $result = $tokens[$this] cmp $tokens[$next];  
 #print "With sign=$sign comparing $tokens[$this] with ", 
      #      "$tokens[$next] giving result $result"; 
 if ($result == 1){ #then swap 2 values so max is in $tokens[$next] 
   #print " and toggling sign and values"; 
   my($min) = $tokens[$next]; 
   my($max) = $tokens[$this]; 
   $tokens[$this] = $min; 
   $tokens[$next] = $max; 
   if ($sign == 1){$sign = -1} else {$sign = 1}; #and swap sign value 
 } 
 #print ".\n"; 
      } 
    } 
  } 
   #after sorting now can safely remove duplicate terms a*a=1  
   #without sign change (or -1 w/sign adjust) 
  %termcount = ();   
  #precount identical tokens & then include one copy for odd counts 
  grep { $termcount{$_}++; 0} @tokens;  
  #flip sign due to right hand rule. but not right yet so remove 
#  if ($right_hand_rule && &oddp($termcount{$first_term}) &&  
#      &oddp($termcount{$last_term})) { 
#    #print "Flipping Sign=$sign due to Right hand rule for @tokens\n"; 
#    $sign = $sign * -1;  
#  } 
  my ($result_is_zero) = 0; 
  if ($term_squared_zero) { 
      @results = grep { $result_is_zero = 1 if $termcount{$_} > 1; 
                        $termcount{$_} == 1 } @tokens; 
      return 0 if $result_is_zero && (0 == scalar @results); 
      if ($sign == 1) { $sign = "+" } else { $sign = "-" }; 
      return "@sign @results"; 
  } else { 
      @results = 
          grep { my($odd) = &oddp($termcount{$_}); 
                 $sign = &signadj($sign,$_,$termcount{$_}); 
                 $termcount{$_} = 0; 
                 $odd} 
               @tokens; 
      @results = (1) unless @results; 
      if ($sign == 1) { $sign = "+" } else { $sign = "-" }; 
      return "$sign @results"; 
  }  
} 
 
sub signadj {  #adjusts the sign when removing duplicate terms 
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  my($oldsign, $token, $count) = @_; 
  my($local_term_squared) = $term_squared; 
  if ($time_basis) { 
    if ($time_basis eq $token) { 
      #then set as time like according to Univ Cambridge GA tutorial 
      $local_term_squared = 1;   
    } else { 
      $local_term_squared = -1; #but set all others as space like 
    } 
  } 
  if ($count == 1) { 
    #default case when sorting but no dupls removed, so don't touch sign  
    return $oldsign;   
  } elsif ($local_term_squared == 1) { 
    return $oldsign; 
  } elsif ($local_term_squared == -1) { 
    #divide count by two and flip sign that number of times 
    $count = $count >> 1;   
    while ($count) { 
      $count--; 
      $oldsign = $oldsign * -1; 
    } 
    return $oldsign; 
  } else { 
    die "ERROR: invalid value for term_squared=$local_term_squared\n"; 
  } 
} 
 
sub oddp { my($numb) = @_; return $numb % 2;} 
 
sub number_and_terms { 
  my($tokenstring) = @_; 
  my($sign, @tokens); 
  ($sign, @tokens) = split(/ +/,$tokenstring); 
  if ($sign eq "+") {      $sign = 1; 
  } elsif ($sign eq "-") { $sign = -1; 
  } else {unshift (@tokens,$sign); $sign = 1; #if no sign then assume pos 
  } 
  return ($sign, @tokens); 
} 
 
sub sign_and_terms { 
  my($tokenstring) = @_; 
  my($sign, @tokens); 
  ($sign, @tokens) = split(/ +/,$tokenstring); 
  if (($sign eq "+") || ($sign eq "-")) {  
    $sign = $sign; 
  } else {  
    unshift (@tokens, $sign);  
    $sign = "+";  #if no sign then assume positive 
  } 
  return ($sign, @tokens); 
} 
 
#end of file 
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APPENDIX C  

PERL SOURCE CODE FOR GANDG.PL TOOL 

 
This code is relatively short because it depends on shared file permutation.pl, which the 

source code can be found in Appendix F. 

 

#!/usr/bin/perl 
#!/usr/local/bin/perl 
 
#Geometric algebra AND generator based on dimensions and permutation.pl 
 
#  usage: gandg.pl <dims>  
#example: gandg.pl "a,b,c" 
#example: gandg.pl "a,b,c,d,e" 
 
require 'permutation.pl'; 
 
#this order is maintained through out 
@dimterms = split /[,; ]/, shift @ARGV;    
 
@sorterms = sort {$a cmp $b} @dimterms; 
if (join(" ",@sorterms) ne join(" ", @dimterms)) { 
    die("ERROR: Since input terms are not in expected sort order: " . 
        "@sorterms\n"); 
} 
 
print join " ", &generate_equ_for_maxstate(@dimterms), "\n\n"; 
 
#end of file 
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APPENDIX D  

PERL SOURCE CODE FOR GAG.PL TOOL 

#!/usr/bin/perl 
#!/usr/local/bin/perl 
 
#Geometric algebra generator for equations based on state numerical values 
#Default is to set states to + but can all specify - result. All others 
#are unassigned (left at 0). 
 
#  usage: gag.pl <dims> <stateset1> <stateset2> ... etc 
#example: gag.pl "a,b,c" "4,5,-6 7"    
#where statesets are lexigraphical state number based on dimterm order 
#example: gag.pl "a,b,c" "+,6" "-7" 
#vector mode starts and ends with square brackets 
#example: gag.pl "a,b,c" "[+--+ +-0+]"   
 
require 'permutation.pl'; 
$verbose = 0;  #set =1 for verbose debug printing 
@dimterms = split /[,; ]/, shift @ARGV;   #this order is maintained 
through out 
@revterms = reverse @dimterms; 
$dims = scalar @dimterms; 
$maxstate = (2 ** $dims) - 1; 
$odd_arity = $dims % 2;  #based on number of dims; 
 
@sorterms = sort {$a cmp $b} @dimterms; 
if (join(" ",@sorterms) ne join(" ", @dimterms)) { 
    die("ERROR: Since input terms are not in expected sort order: " . 
        "@sorterms\n"); 
} 
 
@andterms = &generate_equ_for_maxstate(@dimterms); 
%termhash; 
%statequations; 
$tablecontrols = "quiet"; #suppresses the input eqn printing (can be huge) 
my($laststate) = -1;  #used in vector input mode 
 
while (@ARGV) { 
  $current_states = shift @ARGV; 
  print "BEFORE $current_states\n" if $verbose; 
  if ($vectormode = $current_states =~ /\[(.+)\]/) { 
      $current_states = $1; 
      die "ERROR: bad chars in vector mode only allow \"+-0 \"\n"  
          if $current_states =~ /[^+-0 ]/; 
      $current_states =~ s/([+-0])/$1 /g;#splitup tokens w/vector notation 
      $current_states =~ s/  / /g;   #remove unwanted  
      $current_states =~ s/ $//g;    
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  } 
  if ($current_states =~ /verbose/) { $verbose = 1;  } 
  #can pass thru table controls here. 
  if ($current_states =~ /table|zero|vector/) {   
      $tablecontrols .= " " if $tablecontrols; 
      $tablecontrols .= $current_states; 
      next; 
  } 
  print "AFTER $current_states \n" if $verbose; 
  my($assignplus) = 1;    #default sign value 
  @states = split(/[,; ]+/, $current_states); 
  print "split states ARE [@states]\n" if $verbose; 
  foreach $state (@states) { 
    #manage the sign as either seperate token 
    if ($state eq "+") { 
      $assignplus = 1; 
      $state = $laststate + 1; 
    } elsif ($state eq "-") { 
      $assignplus = 0; 
      $state = $laststate + 1; 
    } elsif ($state eq "0" && $vectormode){#skip state only in vector mode 
      $laststate = $laststate + 1; 
      next; 
    #or manage the sign as part of other number token 
    } elsif (substr($state,0,1) eq "+") { 
      $assignplus = 1; 
      $state = substr($state,1) || ($laststate + 1); 
    } elsif (substr($state,0,1) eq "-") { 
      $assignplus = 0; 
      $state = substr($state,1) || ($laststate + 1); 
    } 
    if ($verbose){ 
    print "WARNING: State=$state is not in expected order ",  
          $laststate + 1, "\n" if $state != ($laststate + 1); 
    } 
    $laststate = $state; 
    die "WARNING: Bad state $_ exceeds max of $maxstate\n"  
        unless (abs($state) <= $maxstate); 
    %termhash = &binary_explode_hash($state,@revterms);# always overwrite 
    $result = join(" ", map { &adjusterm($_, $assignplus) } @andterms); 
    $statequations{$state} = $result; 
    print "State $state with sign ", $assignplus?"+":"-",  
          " has equation $result\n" if $verbose; 
  } 
} 
 
$all_terms = join(" ", map({ "\"($_)\"" } values %statequations));  
#use remote shell call to simplify equations. 
print `./ga.pl $tablecontrols $all_terms`;     
 
##************************************************************* 
##subroutines are below here 
 
#substitutes in for each vector the new sign value based on bin row count. 
sub adjusterm {    
  my ($term, $positive) = @_; 
  my ($item, $sign, $tokenstring); 
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  ($sign, $tokenstring) = $term =~ /([+-]) (.+)/; 
  foreach $item (@dimterms){ 
    if ($termhash{$item} eq "-") {#toggle sign if token in string 
      $sign = ($sign eq "+") ? "-" : "+" if $tokenstring =~ /$item/;  
    } 
  } 
  #invert one last time if not positive 
  $sign = ($sign eq "+") ? "-" : "+" unless $positive;   
  return "$sign $tokenstring"; 
} 
 
#determines which vectors need to be inverted based on integer row count 
sub binary_explode_hash {   
  my($integer, @revstates) = @_; 
  my(%results); 
  while (@revstates) { 
    $results{shift @revstates} = ($integer & 1) ? "+" : "-"; 
    $integer = $integer >> 1; 
  } 
  return %results; 
} 
 
#end of file 
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APPENDIX E  

PERL SOURCE CODE FOR GASOLVE.PL TOOL 

 
#!/usr/bin/perl 
#!/usr/local/bin/perl 
 
#Geometric algebra solver that iterates through all possible multivectors 
 
#  usage: gasolve.pl <dims> <eXpression> <result1><result2> ... etc 
 
#example: gasolve.pl "a0,a1,b0,b1" "(a0 a1 + b0 b1) (X)"  "1" 
#tries to find the multiplicative inverse of (a0 a1 + b0 b1)  
 
#example: gasolve.pl "a0,a1,b0,b1" "(X)(X)" "(a0 - a1)" 
#tries to find the square root of cnot which should be chad 
 
require 'permutation.pl'; 
require 'galib.pl';    #code identical to ga.pl except is imported 
 
$bindir = "."; 
$varname = "X";  #use capital X to indicate where to substitute 
 
#this order is maintained through out 
@dimterms = split /[,; ]/, shift @ARGV;    
@revterms = reverse @dimterms; 
$dims = scalar @dimterms; 
$maxstate = (2 ** $dims) - 1; 
$odd_arity = $dims % 2;  #based on number of dims; 
 
@sorterms = sort { $a cmp $b} @dimterms; 
if (join(" ",@sorterms) ne join(" ", @dimterms)) { 
    die("ERROR: Since input terms are not in expected sort order: " . 
        "@sorterms\n"); 
} 
 
$initial_state = 0; 
if (! ($ARGV[0] =~ /[^-+0]/)) { #if any chars other then +-0 then skip 
    $initial_state = shift @ARGV; 
    #print "STARING with state $initial_state\n"; 
} 
 
$eqn = shift @ARGV; 
$tablecontrols = "quiet";  #suppresses input eqn print which can be huge  
 
if (grep /X/, @ARGV) { 
    $X_in_answer = "TRUE"; 
    @answers = map {$_} @ARGV; 
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} else { 
    @answers = map {&standardize_eqn($_)} @ARGV; 
} 
 
@andterms = map {substr($_,2)} &generate_equ_for_maxstate(@dimterms); 
 
$max = $#andterms; 
@trinary = map { ($initial_state ? substr($initial_state, $_, 1) : "0")  
                 || "0"} (0 .. $max);  
print "Starting with state ", @trinary, " = ", &fetch_all_terms(), "\n"  
      if $initial_state; 
 
$totalcount = 0; 
$matchcount = 0; 
while ($next = &next_eqn_perm()) { 
    my ($eqncopy) = $eqn; 
    $totalcount++; 
    $result = &standardize_eqn($eqncopy,$next); 
    my (@custom_answers) = @answers; 
    if ($X_in_answer) { 
 @custom_answers = map {&standardize_eqn($_,$next)} @answers; 
    } 
#print "Iteration \"$result\" for X = \"$next\" in $eqncopy matching 
#@custom_answers\n";     
    @matches = grep {$_ eq $result} @custom_answers; 
    if (@matches || 0 == @answers) { 
 $matchcount++ if @matches; 
 print "Found Match for X = $next in $eqn = $result\n"; 
    } 
    if (($totalcount % 100000) == 0) { 
 print "TRIED $totalcount: ", @trinary,  
            " = $next and found $matchcount on " . `date`; 
    } 
} 
print "Attempted $totalcount with $matchcount found.\n"; 
 
##************************************************************* 
##subroutines are below here 
sub next_eqn_perm {#get the next equation combinations by trinary counting 
    foreach $index (0 .. $max) {  #while in this loop trinary count  
        my ($tristate) = $trinary[$index]; 
 if ($tristate eq "0") { 
     $trinary[$index] = "-"; 
     last; 
 } elsif ($tristate eq "-") { 
     $trinary[$index] = "+"; 
     last; 
 } elsif ($tristate eq "+") { 
     $trinary[$index] = "0";  #this is carry into next bit 
           # die "Max Carry hit for $totalcount\n" if ($index == $max); 
        } else { 
     die "Illegal value found in index=$index\n"; 
 } 
    } 
    #then collect all non-zero terms 
    return join "", map {&fetch_term($_)} (0 .. $#trinary)   
} 
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sub fetch_all_terms {  #then collect all non-zero terms 
    return join "", map {&fetch_term($_)} (0 .. $#trinary)   
} 
 
#conditionally collects the Ith term with the appropriate sign 
sub fetch_term {   
    my ($index)= @_; 
    my ($andterm) = $andterms[$index]; 
    my ($prefix) = $trinary[$index]; 
    my ($endfix) = ($index == $max) ? "" : " "; 
    if ($prefix eq "0") { 
 return ""; 
    } else { 
        return $prefix . " " . $andterm . $endfix;  #for + and - terms 
    } 
} 
 
sub standardize_eqn { 
    my($equation, $customize) = @_; 
    if ($customize) {  #customize result each time equation is passed. 
 $equation =~ s/$varname/$customize/g; 
    } 
#    $equation = `$bindir\/ga.pl quiet \"$equation\"`;  chomp $equation; 
    $equation = &ga_evaluate("quiet", $equation); 
    return $equation; 
} 
 
 
#end of file 
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APPENDIX F  

PERL SOURCE CODE FOR SHARED PERMUTATION.PL FILE 

 
#!/usr/local/bin/perl 
#For inputs (a,b,c,etc) produces the equivalent of (1+a)(1+b)(1+c)etc 
 
sub generate_equ_for_maxstate { #only callable function in this file 
  my (@terms) = @_;  #ordered list of vector term names 
  my ($usesign, $found, @allpermutations); 
  my ($expect) = 2 ** (scalar(@terms));  #number of expected terms 
  $usesign = (scalar(@terms) % 2) ? "-" : "+";  #odd_arity use - sign 
  #print "TERMS are @terms\n"; 
  @allpermutations = map { &generate_permutation($_, $usesign, @terms) } 
                         (1 .. scalar(@terms)); 
  unshift(@allpermutations, "$usesign 1"); 
  $found = scalar(@allpermutations); 
  print "WARNING: Expected $expect permutation count=$found for @terms\n" 
        unless $expect == $found ; 
  return @allpermutations; 
} 
 
sub generate_permutation {#really generating combinations not permutations 
  my ($bycount, $sign, @theterms) = @_; 
  my (@results); 
  my ($maxgap, $gapindex, $gather, $term); 
  #print "PERMUTATION: bycount=$bycount, sign=$sign, @theterms\n"; 
  $sign = $sign . " " if $sign =~ /[+-]/; 
  if ($bycount == 1) { 
    return map { $sign . $_ } @theterms;    
  } elsif ($bycount > 2) { 
    my($first, @rest, @subterms); 
    $maxgap = scalar(@theterms) - $bycount + 1; 
    while ($gapindex < $maxgap) { 
      ($first, @rest) = @theterms; 
      @subterms = &generate_permutation($bycount-1,"", @rest);  
      #print "SUBTERMS for $bycount, $sign, @theterms were =",  
      #       join("=", @subterms), "=\n"; 
      @results = (@results, map { "$sign$first $_" } @subterms); 
      shift @theterms; 
      $gapindex++; 
    } 
    return @results; 
  } else { 
    while (@theterms) { 
      $gapindex = 0; 
      $maxgap = scalar(@theterms) - $bycount + 1; 
      #print "MAXGAP = $maxgap @theterms\n"; 
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      while ($gapindex < $maxgap) { 
 $term = $theterms[0]; 
 $gather = 1; 
 while ($gather < $bycount)  { 
#print "COUNTS are max= $maxgap gap= $gapindex gather= $gather $term\n"; 
   $term .= " " . $theterms[$gapindex + $gather]; 
   $gather++; 
 } 
 unshift(@results, $sign . $term); 
 $gapindex++; 
      } 
      shift @theterms;  #shorten the iteration list/array 
    } 
    #print " produced @results\n"; 
    return reverse @results; 
  } 
} 
 
1; #return true when used with require and end of file 
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APPENDIX G  

PERL SOURCE CODE FOR SHARED GALIB.PL FILE 

This file is a shared version of ga.pl from Appendix B, so only the top level functions are 

changed. This file only takes args passed thru function interface, and not thru UNIX pipes. 

#!/usr/bin/perl 
#!/usr/local/bin/perl 
#Geometric algebra parsing, normalization, products and simplification  
#routines supporting non-commutative products where a*a = 1 and a*b=-b*a  
#and mod 3 arithmetic with 2=-1 
#Only the top two functions are intended to be callable by other programs 
 
sub init_ga_globals { 
    my (@myargs) = @_; 
    my ($arg); 
    $hush = 0; 
    $verbose = 0;  #for debugging only 
    $nosimplify = 0; 
    $evaluate_table = 0; 
    $printfunction = 0; 
    $showzeros = 0; 
    $outerproduct = 1;  #set both for geometric product 
    $innerproduct = 1; 
    $term_squared=1; #controls if a*a=1 (default) or a*a=-1 (w/minus flag) 
    $time_basis = "";   # indicate time=token variable 
    %dimnames = (); 
    %all_terms = (); 
    $right_hand_rule = 0;  #don't set this unless experimentation 
    $first_term = ""; 
    $last_term = ""; 
    while ($arg = $myargs[0]) {  #must put all control parameters first 
      print "DEBUGGING parsing of $arg\n" if $verbose; 
 if ($arg =~ /simplif/i) { 
     $nosimplify = "ON"; 
     print "ENABLED parameter: no simplification\n" if $verbose; 
     shift @myargs; 
     next; 
 } elsif ($arg =~ /table/i) { 
     $evaluate_table = "ON"; 
     print "ENABLED parameter: table\n" if $verbose; 
     shift @myargs; 
     next; 
 } elsif ($arg =~ /function/i) { 
     $evaluate_table = "ON"; 
     $printfunction = "ON"; 
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     print "ENABLED parameters: table & show function\n" if $verbose; 
     shift @myargs; 
     next; 
 } elsif ($arg =~ /zero/i) { 
     $evaluate_table = "ON"; 
     $showzeros = "ON"; 
     print "ENABLED parameters: table and show zeros\n" if $verbose; 
     shift @myargs; 
     next; 
 } elsif ($arg =~ /vector/i) { 
          $evaluate_table = "ON"; 
          $vector_result = "ON"; 
         print "ENABLED params: zeros & show vector result\n" if $verbose; 
          shift @myargs; 
          next; 
      } elsif ($arg =~ /quiet/i) { 
     $hush = "ON"; 
     print "ENABLED parameter: quiet\n" if $verbose; 
     shift @myargs; 
     next; 
 } elsif ($arg =~ /left/i) { 
     $right_hand_rule = 0; 
     print "DISABLED parameter: right\n" if $verbose; 
     shift @myargs; 
     next; 
 } elsif ($arg =~ /right/i) { 
     $right_hand_rule = 1; 
     print "ENABLED parameter: right\n" if $verbose; 
     shift @myargs; 
     next; 
 } elsif ($arg =~ /minus/i) { 
     $term_squared = -1; 
     print "ENABLED parameter: minus\n" if $verbose; 
     shift @myargs; 
     next; 
      } elsif ($arg =~ /all/i) { 
          $use_all_terms = 1; 
          print "ENABLED parameter: all\n" if $verbose; 
          shift @myargs; 
          next; 
      } elsif ($arg =~ /outer/i) { 
          $outerproduct = 1; 
          $innerproduct = 0; 
          print "ENABLED parameter: outer\n" if $verbose; 
          shift @myargs; 
          next; 
      } elsif ($arg =~ /inner/i) { 
          $outerproduct = 0; 
          $innerproduct = 1; 
          print "ENABLED parameter: inner\n" if $verbose; 
          shift @myargs; 
          next; 
      } elsif ($arg =~ /geom/i) { 
          $outerproduct = 1; 
          $innerproduct = 1; 
          print "ENABLED parameter: geometric\n" if $verbose; 
          shift @myargs; 



 184 

          next; 
 } elsif (($value) = ($arg =~ /time=(.+)/i)) { 
     $time_basis = $value; 
     print "ENABLED parameter: time=$value\n"; 
     shift @myargs; 
     next; 
 } else { 
     return @myargs; 
 } 
    } 
    return @myargs; 
} 
sub ga_evaluate {  ##this is the main routine that all args are passed. 
    my(@myeqns); 
    my($eqn); 
    @myeqns = &init_ga_globals(@_);   
    $sum_resultsp = scalar(@myeqns) > 1; 
    $sum_results = ""; 
    print "MYEQNS are @myeqns\n" if $verbose;  
    #default table input terms if expression simplifies to constant. 
    map { &all_terms($_) } @myeqns;   
    if ($right_hand_rule){ 
 foreach $term (&sort_terms(keys %all_terms)) { 
     $first_term = $term unless $first_term; 
     $last_term = $term;  #leaves last value set in variable 
 } 
    } 
    print "First=$first_term and Last=$last_term\n" if $verbose; 
    print "Input expression is ", join(" + ", @myeqns), "\n" unless $hush; 
    #all args are simplified and then summed together  
    while ($eqn = shift @myeqns) {  
 @prod_terms = &parse_products($eqn); 
 if (scalar @prod_terms > 1) { 
     $results = &tensor_products(@prod_terms); 
     #print "Tensor Product of $eqn is:\n   $results\n"; 
 } else { 
     $results = join(" ", &simply_equ(&parse_equ($prod_terms[0]))); 
 #print "Eqn \"$prod_terms[0]\" in normalized form is:\n $results\n"; 
 } 
 return $results unless $evaluate_table || $sum_resultsp; 
 if ($sum_resultsp) { 
     $sum_results .= " " . $results; 
 } else { 
     &evaluate_table($results);   #this is never executed 
 } 
    } 
    #then simply sum of separate partial results and print final results 
    if ($sum_resultsp) {   
 $combined = join(" ", &simply_equ(&parse_equ($sum_results))); 
 return $combined unless $evaluate_table; 
 &evaluate_table($combined);     #this is never executed 
    } 
} 
#the remainder of the file is the same as ga.pl starting with definition 
#of function all_terms() 
1; #return true and also end of file 
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APPENDIX H  

SUMMARY OF NOTATION AND BASES 

Geometric algebra notation and properties with orthonormal vectors a, b, c, etc: Gn 

Geometric algebra: G2 = span{a, b}, G3 = span{a, b, c}, G4 = span{a, b, c, d}, etc 

Co-occurrence: a + b means a concurrent with b. + = 0a a , where 0 means cannot occur. 

Geometric product a b : = ∧a b a b + a bi  and − = − ∧b a a b b ai  

Inner product a bi :  vectors are orthogonal 0= =a b b ai i  and self collinear 1= =a a b bi i . 

Outer Product ∧a b : bivector orientation is anti-commutative ∧ = − ∧a b b a . 

Spinor and Pseudoscalar: I = (a b) where (a b)(a b) = –a a b b = –1 or (a b) = 1−  

Multivector: 
0 1

...
rr

A A A A= + + = ∑ , 
0

A = scalars, 
1

A = vectors, 
2

A = bivectors 

For any 1-vector x: since x2 = 1, so x = x-1. For X = (±1±x): X-1 is undefined, so X is singular. 

Projectors Pk= –Rk: R0=C– –=(1–a)(1–b)=[+000], R1=C–+=[0+00], R2=C+–=[00+0], R3=C++=[000+] 

Eigenvectors: InG2, Ek
2

 = +1, Ek Rk = Rk, Pk
2

 =Pk, then Ek = (±a±b±a b) = Rk –1, 1kP = +∑  

Qubit notation and properties: Q1 = G2 

Qubit A: is defined for Q1 = G2 = span{a0,a1}. Spinor SA = a0 a1, Pauli spin PA = (–1+SA) 

Qubit states A = (±a0±a1): A0 = (+a0–a1), A1 = (–a0+a1), A+ = (+a0+a1), A– = (–a0–a1),  

Qubit properties:  A0 = –A1, A+ = –A– and also 1/A0 = –A0 = A1, 1/A+ = –A+ = A– 

Phases: Classical:{A0, A1}=( )±a0 a1∓ , A0A1=1, Superposition:{A+, A–}=( )± ±a0 a1 , A+A–=1 

Hadamard: A0/1SA =A±, A±SA =A1/0. Inverter: ASASA = –A, Pauli: A0/1PA = a1∓ , A±PA =±a0. 
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Quantum register notation and properties: Qq = Gn=2q 

Quantum register AB: is defined as Q2 = G4 = span{a0,a1,b0,b1}, SA, SB, P  = PAPB 

Geometric is Tensor Product: AB = (±a0±a1)(±b0±b1) = (± a0 b0 ± a0 b1 ± a1 b0 ± a1 b1) 

Pseudoscalar:  is a 4-vector SA SB = (a0 a1 b0 b1) where reverse(SA SB) = SA SB 

Pauli spin: P  = PA PB = (–1 + SA)(–1 + SB) = (+1 – SA – SB + SA SB) 

Singlets: A0 B0 PA PB = A0 PA B0 PB = a1 b1 = S11, S00 = a0 b0, S01 = a0 b1, S10 = a1 b0 

Sequential spinors: A0 B0 (SA SB) = A+ B+ = (+ a0 b0 + a0 b1 + a1 b0 + a1 b1) 

Concurrent spinors: A0 B0 (SA + SB) = (– a0 b0 + a1 b1) = – S00 + S11 = B0 Bell state = +Φ  

Bell Recursive Operator: B = (SA + SB) where B i+1 = B i B for i = {0–3}, B -1 is undefined. 

Bell States: B0=(–S00+S11)= +Φ , B2=(S00–S11)= −Φ , B1=(S01+S10)= +Ψ , B3=(–S01–S10)= −Ψ  

Magic Recursive Operator: M = (SA – SB), M i+1 = M i M for i = {0–3},M -1 is undefined. 

Magic States: M0 = (S01 – S10), M2 = (–S01 + S10), M1 = (–S00 – S11), M3 = (S00 + S11) 

Phase difference: M3 = B0 – S00 = B0 (S01 + S10) = B0 B1 

Direction reversal: B i–1 = –B i B = B i PA PB and M i–1 = –M i M = M i PA (–1 – SB) 

Multiplicative cancellation: M i B = B i M = 0 and since A+ B+ = M3 +B1 then A+ B+B = B2 

Sparse Invariants: 2 (1 )A B
−= − =S SB I , 2 (1 )A B

−= + =S SM I , and 4 2 2( )+ ±= = =B B I I  

Vector notation: 1 [ ]+ = + + + + + + + + + + + + + + + + , 1 [ ]− = − − − − − − − − − − − − − − − −  

Sparse +1: 4 [0 0 00 00 0 0]+= = + + + + + + + +B I , 4 [ 00 0 0 0 0 00 ]+= = + + + + + + + +M I  

Sparse –1:  2 [0 0 00 00 0 0]−= = − − − − − − − −B I , 2 [ 00 0 0 0 0 00 ]−= = − − − − − − − −M I  

Control-Not: CNOTAB = A0 for A B CNOTAB and B  or M since B 2 = I – and M 2 = I – 

Control-Hadamard: CHADAB = ±1 + A0 and = +B I + B  or = +M I + M  
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This page contains a recap of figures previously shown in chapters four, five, and six. 

 
 

Projection Operators Pi form sides of dual tetrahedrons for Q1 = A = (±a0±a1) 

 

Geometric representation of reversible bases for Q1 = A = (±a0±a1) 

 

Geometric representation of Bell and Pauli bases for Q2 = AB = (±a0±a1)(±b0±b1) 
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